Clarkson | Applications of Analytic and Geometric Methods to Nonlinear Differential Equations | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 413, 477 Seiten, eBook

Reihe: Nato Science Series C:

Clarkson Applications of Analytic and Geometric Methods to Nonlinear Differential Equations


1993
ISBN: 978-94-011-2082-1
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 413, 477 Seiten, eBook

Reihe: Nato Science Series C:

ISBN: 978-94-011-2082-1
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark



In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years. (1) The inverse scattering transform (IST), using complex function theory, which has been employed to solve many physically significant equations, the `soliton' equations. (2) Twistor theory, using differential geometry, which has been used to solve the self-dual Yang--Mills (SDYM) equations, a four-dimensional system having important applications in mathematical physics. Both soliton and the SDYM equations have rich algebraic structures which have been extensively studied.
Recently, it has been conjectured that, in some sense, all soliton equations arise as special cases of the SDYM equations; subsequently many have been discovered as either exact or asymptotic reductions of the SDYM equations. Consequently what seems to be emerging is that a natural, physically significant system such as the SDYM equations provides the basis for a unifying framework underlying this class of integrable systems, i.e. `soliton' systems. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods.
The majority of nonlinear evolution equations are nonintegrable, and so asymptotic, numerical perturbation and reduction techniques are often used to study such equations. This book also contains articles on perturbed soliton equations. Painlevé analysis of partial differential equations, studies of the Painlevé equations and symmetry reductions of nonlinear partial differential equations.


(ABSTRACT)
In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years; the inverse scattering transform (IST), for `soliton' equations and twistor theory, for the self-dual Yang--Mills (SDYM) equations. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. Additionally, it contains articles on perturbed soliton equations, Painlevé analysis of partial differential equations, studies of the Painlevé equations and symmetry reductions of nonlinear partial differential equations.
Clarkson Applications of Analytic and Geometric Methods to Nonlinear Differential Equations jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Preface. I: Self-Dual Yang--Mills Equations. II: Completely Integrable Equations. III: Painlevé Equations and Painlevé Analysis. IV: Symmetries of Differential Equations. Author Index. Subject Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.