Cohen Microbial Biochemistry
2. Auflage 2011
ISBN: 978-90-481-9437-7
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 558 Seiten, eBook
Reihe: Biomedical and Life Sciences (R0)
ISBN: 978-90-481-9437-7
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;6
2;Contents;8
3;Abbreviations;22
4;Introduction;28
5;Chapter 1: Bacterial Growth;30
5.1;The Lag Phase;30
5.2;The Exponential Phase;30
5.3;Linear Growth;31
5.4;The Yield of Growth;32
5.5;Variation of the Growth Rate at Limiting Carbon Source Concentrations;33
5.6;Continuous Growth: The Chemostat;34
5.7;Advantages of the Continuous Exponential Culture;36
5.8;Diauxic Growth;36
5.9;Selected References;39
5.9.1;Bacterial Growth: Diauxie;39
5.9.2;Linear Growth;39
5.9.3;Continuous Growth: The Chemostat;39
5.9.4;Influence of Growth Rate on Cellular Constituents;39
5.9.5;Adaptive (Inducible) Enzymes: Prehistory;39
6;Chapter 2: The Outer Membrane of Gram-negative Bacteria and the Cytoplasmic Membrane;40
6.1;The Outer Membrane of Gram-Negative Bacteria;40
6.2;The Cytoplasmic Membrane;41
6.3;Energy Generation;42
6.3.1;ATP Synthase;42
6.4;Subunit Composition of the ATP Synthase;43
6.5;ATP Synthesis in Archaea;45
6.6;Selected References;45
6.6.1;ATP Synthase;45
7;Chapter 3: Peptidoglycan Synthesis and Cell Division;46
7.1;General Structure;46
7.2;Assembly of the Peptidoglycan Unit;47
7.3;The Membrane Steps;48
7.4;Assembly of the Murein Sacculus;49
7.5;Penicillin Sensitivity;49
7.6;Cell Division;50
7.7;Selected References;51
7.7.1;Cell Division;51
8;Chapter 4: Cellular Permeability;52
8.1;Accumulation, Crypticity, and Selective Permeability;53
8.2;beta-Galactoside Permease;54
8.2.1;Accumulation in Induced Cells: Kinetics and Specificity;55
8.2.2;The Induced Synthesis of Galactoside Permease;58
8.2.3;Functional Significance of Galactoside Permease: Specific Crypticity;59
8.2.4;Functional Relationships of Permease: Induction;61
8.2.5;Genetic Relationships of Galactosidase and Galactoside Permease;61
8.2.6;Galactoside Permease as Protein;62
8.3;Periplasmic Binding Proteins and ATP Binding Cassettes;65
8.4;Phosphotransferases: The PTS System;68
8.5;TRAP Transporters;70
8.6;A Few Well-identified Cases of Specific Cellular Permeability;71
8.6.1;Amino Acid Permeases;71
8.6.2;Peptide Permeases;72
8.7;Porins;74
8.8;Iron Uptake;76
8.9;Conclusion;77
8.10;Selected References;77
8.10.1;beta-Galactoside Permease;77
8.10.2;Amino Acid Permeases;77
8.10.3;Periplasmic Proteins and ATP-Binding Cassettes;77
8.10.4;Phosphotransferase System;78
8.10.5;Peptide Permeaes;78
8.10.6;TRAP Transporters;78
8.10.7;Porins;78
9;Chapter 5: Allosteric Enzymes;79
9.1;Allosteric Inhibition and Activation;82
9.2;An Alternative Model;89
9.3;Conclusion;90
9.4;Selected References;90
10;Chapter 6: Glycolysis, Gluconeogenesis and Glycogen Synthesis;91
10.1;Glycogen Degradation;91
10.2;Glycolysis;91
10.2.1;Hexokinase;93
10.2.2;Glucose 6-Phosphate Isomerase;93
10.2.3;Phosphofructokinase;94
10.2.3.1;A Second Phosphorylation Follows the Isomerization Step;94
10.2.3.2;Regulation of Phosphofructokinase in Bacteria;95
10.2.4;Fructose 1,6-Bisphosphate Aldolase;96
10.2.5;Triose Phosphate Isomerase;96
10.2.5.1;As for the Preceding Enzyme, This One Is not Subject to Metabolic Regulation;96
10.2.6;Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH);96
10.2.7;Phosphoglycerate Kinase;97
10.2.8;Phosphoglyceromutase;97
10.2.9;Enolase;97
10.2.10;Pyruvate Kinase;98
10.3;Gluconeogenesis;98
10.4;Fructose Bisphosphatase in Microorganisms;98
10.5;Glycogen Synthesis;99
10.5.1;Glycogen Synthase;99
10.6;Control of Glycogen Biosynthesis;100
10.7;Branching Enzyme;100
11;Chapter 7: The Pentose Phosphate and Entner-Doudoroff Pathways;101
11.1;The Pentose Phosphate Pathway;101
11.2;The Enzymes of the Oxidative Phase;101
11.2.1;Glucose 6-Phosphate Dehydrogenase;101
11.2.2;6-Phosphogluconolactonase;102
11.2.3;6-Phosphogluconate Dehydrogenase (Decarboxylating);102
11.2.4;Ribose Phosphate Isomerase;102
11.3;The Enzymes of the Non-oxidative Phase;102
11.3.1;Transketolase;103
11.3.2;Transaldolase;104
11.3.3;Ribulose-5-Phosphate-3-Epimerase;104
11.4;Regulation of the Pentose Phosphate Pathway;105
11.4.1;The Entner-Doudoroff Pathway;105
12;Chapter 8: The Tricarboxylic Acid Cycle and the Glyoxylate Bypass;106
12.1;The origin of acetyl CoA: The Pyruvate Dehydrogenase Complex;106
12.2;Overview of the Tricarboxylic Acid (TCA) Cycle;108
12.2.1;Origin of the Oxaloacetate;108
12.3;Organization of the Enzymes of the Tricarboxylic Acid Cycle;123
12.4;The Tricarboxylic Acid Cycle Is a Source of Biosynthetic Precursors;124
12.5;The Anaplerotic Glyoxylic Pathway Bypass;124
13;Chapter 9: ATP-Generating Processes: Respiration and Fermentation;127
13.1;Respiration;127
13.2;Fermentation;130
13.3;Acetone-Butanol Fermentation;130
13.4;The Stickland Reaction;131
13.5;Ornithine Fermentation;131
13.6;Glycine and Proline Degradation;132
13.7;Threonine Degradation;132
13.8;Glutamate Degradation;133
13.9;Lysine Degradation;134
13.10;Arginine Fermentation;135
13.11;Methionine Degradation;136
13.12;D-Selenocystine and D-Cysteine Degradation;136
13.13;Selected References;137
13.13.1;NADH-Ubiquinone Oxidoreductases;137
13.13.2;Erom Quinones to Oxygen;137
13.13.3;The Stickland Reaction;137
13.13.4;Arginîne and Ornithine Degradation;137
13.13.5;Threonine Degradation;138
13.13.6;Glycine Degradation;138
13.13.7;Proline Degradation;138
13.13.8;Glutamate Degradation;138
13.13.9;Lysine Degradation;138
13.13.10;Methionine gamma-Lyase;138
13.13.11;D-Selenocystine and D-Cysteine Degradation;139
14;Chapter 10: Biosynthesis of Lipids;140
14.1;Biosynthesis of Short Chain Fatty Acids;140
14.2;Biosynthesis of Long-Chain Fatty Acids;141
14.2.1;Synthesis of Acetyl CoA;141
14.2.2;Synthesis of Malonyl CoA;141
14.2.3;From Malonyl CoA to Palmitate;142
14.3;Regulation of Yeast Fatty Acid Synthesis at the Genetic Level;145
14.4;Regulation of Fatty Acid Synthesis in Bacteria;147
14.5;Biosynthesis of Triglycerides;147
14.6;Biosynthesis of Phosphoglycerides;147
14.7;Cyclopropane Fatty Acid Synthase (CFA Synthase);148
14.8;Selected References;150
14.8.1;Short Chain Fatty Acid Synthesis;150
14.8.2;Fatty Acid Synthesis and Its Regulation;150
14.8.3;Cyclopropane Fatty Acid Synthetase;150
15;Chapter 11: Iron-Sulfur Proteins;151
15.1;Iron-Sulfur Clusters;151
15.2;2Fe-2S Clusters;152
15.3;4Fe-4S Clusters;152
15.4;3Fe-4S Clusters;153
15.5;Other Fe-S Clusters;153
15.6;Biosynthesis of Fe-S Clusters;153
15.7;Iron-Sulfur Proteins;154
15.8;Selected References;156
16;Chapter 12: The Archaea;157
16.1;Chemical Characteristics of Archaea;159
16.2;Archaea: Fossil Record;160
16.3;Economic Importance of the Archaea;161
16.4;Selected References;161
17;Chapter 13: Methanogens and Methylotrophs;162
17.1;Methanogens and Methanogenesis;163
17.1.1;Reduction of CO2;163
17.1.2;Formylmethanofuran Dehydrogenase;165
17.1.3;Formylmethanofuran: Tetrahydromethanopterin Formyltransferase;166
17.1.4;Methenyltetrahydromethanopterin Cyclohydrolase;167
17.1.5;5, 10-Methylenetetrahydromethanopterin Dehydrogenase;167
17.1.6;5, 10-Methylenetetrahydromethanopterin F420 Oxidoreductase;168
17.1.7;The Methylreductase: Methyl Coenzyme M Reductase;168
17.1.8;Simplification of the Methylreductase System;170
17.1.9;Structure of the Methylreductase;171
17.1.10;Source of the Energy Needed for the Growth of Methanogens;172
17.1.11;Biosynthesis of Some Cofactors Involved in Methanogenesis;172
17.1.12;Methanofuran;172
17.1.13;Methanopterin;172
17.1.14;Coenzyme M;173
17.1.15;7-Mercaptoheptanoylthreoninephosphate (Coenzyme B);174
17.1.16;Biosynthesis of Coenzyme F420;175
17.1.17;Biosynthesis of Factor F430;175
17.1.18;Biosynthesis of Factor III;176
17.2;Methylotrophs;176
17.2.1;Methanotrophs;176
17.2.2;Metabolism of Methyl Compounds;177
17.2.3;Methanol Dehydrogenase (MDH);178
17.2.4;Anaerobic Oxidation of Methane;178
17.2.5;Methylamine Dehydrogenase;179
17.2.6;Carbon Assimilation by Methylotrophs;179
17.3;Carboxydotrophs;181
17.4;Selected References;183
17.4.1;Methanogenesis;183
17.4.2;Biosynthesis of the Methanogenic Cofactors;183
17.4.3;Biosynthesis of Methanofuran;183
17.4.4;Biosynthesis of Methanopterin;183
17.4.5;Biosynthesis of Coenzyme M;183
17.4.6;Biosynthesis of 7-Mercaptoheptanoylthreoninephosphate (Coenzyme B);183
17.4.7;Biosynthesis of Coenzyme F420;184
17.4.8;Biosynthesis of Factor F430;184
17.4.9;Anaerobic Oxidation of Methane;184
17.4.10;Carboxydotrophs;184
18;Chapter 14: Enzyme Induction in Catabolic Systems;185
18.1;The Specificity of Induction;185
18.2;De Novo Synthesis of beta-Galactosidase;186
18.3;Constitutive Mutants;188
18.4;Pleiotropy of the Constitutive Mutants;189
18.5;The Genetic Control and the Cytoplasmic Expression of Inducibility in the Synthesis of beta-Galactosidase in E. coli. The Lac R;190
18.6;Operators and Operons;196
18.7;Selected References;199
18.7.1;Specificity of Induction. De Novo Synthesis;199
18.7.2;Pleiotropy of the i Gene;199
18.7.3;Thiogalactoside Transacetylase;199
18.7.4;Genetics;199
18.7.5;Repressors and Operators;199
19;Chapter 15: Transcription: RNA Polymerase;200
19.1;The Synthesis of Messenger RNA: The Bacterial RNA Polymerase;201
19.2;Termination of Transcription in Prokaryotes;204
19.2.1;Yeast RNA Polymerases;205
19.2.2;Archaeal RNA Polymerases;206
19.3;Transcription Termination and PolyA Tails;207
19.4;Selected References;207
19.4.1;Trans-acting Transcription Factors;207
19.4.2;Eukaryotic RNA Polymerases;207
19.4.3;Termination of Transcription;208
20;Chapter 16: Negative Regulation;209
20.1;Induction Is Correlated with the Synthesis of a Specific Messenger;209
20.2;Isolation of the Lac Repressor;211
20.3;The lac Operator Is a DNA sequence;213
20.4;Direct Observation of Transcription Factor Dynamics in a Living Cell;219
20.5;Selected References;219
20.5.1;Messenger RNA;219
20.5.2;Isolation of Lac Repressor and lac Operator;220
20.5.3;Operators 02 and 03;220
20.5.4;Formation of Loop Structures in DNA;220
20.5.5;Quantifying lac Repressor Kinetics;220
21;Chapter 17: Enzyme Repression in Anabolic Pathways;221
21.1;Description of the Phenomenon;221
21.2;Isolation of Derepressed (Constitutive) Mutants in Biosynthetic Pathways. The Use of Structural Analogues;225
21.3;Replacement of Methionine by Selenomethionine in Proteins;226
21.4;Selected References;227
21.4.1;Repression of the Biosynthesis of Anabolic Enzymes;227
21.4.2;Incorporation of Amino Acid Analogs into Proteins;227
22;Chapter 18: Positive Regulation;228
22.1;The Promoter Region;229
22.2;Role of Cyclic AMP and of the CAP Protein in the Binding of RNA Polymerase to the Promoter Region;230
22.3;The Synthesis and Degradation of Cyclic 232
22.4;How Does Glucose Exert Its Inhibitory Effect on E. coli beta-Galactosidase Synthesis?;233
22.5;Selected References;233
22.5.1;Catabolic Repression;233
22.5.2;Effects of Cyclic AMP on the Glucose Effect;234
22.5.3;The Promoter;234
22.5.4;The CAP Protein;234
22.5.5;Mode of Action of Cyclic 234
23;Chapter 19: The Ribosomes;235
23.1;The Components of E. coli Ribosomes;236
23.2;The Ribosomes of Eukaryotes and of Archaea;237
23.3;Mechanistic Aspects of Translation of Messenger RNA to Protein by Ribosomes;238
23.4;Selected References;239
23.4.1;General;239
23.4.2;Eukaryotic Ribosomes;240
23.4.3;Crystallography;240
24;Chapter 20: The Genetic Code, the Transfer RNAs and the Aminoacyl-tRNA-Synthetases;241
24.1;The Genetic Code;241
24.2;The Transfer RNAs;244
24.3;Selected References;249
24.3.1;Colinearity of Genes and Proteins;249
24.3.2;The Genetic Code;249
24.3.3;Selenocysteine and Pyrrolysine;249
24.3.4;Transfer RNAs;249
24.3.5;Aminoacyl-tRNA Synthetases;249
24.3.6;RNA-Dependent Cysteine Biosynthesis in Archaea;249
25;Chapter 21: Attenuation;250
25.1;Regulation of the trp Operon in Bacillus subtilis;254
25.2;General Remarks on Regulatory Mechanisms;254
25.3;Selected References;255
25.3.1;Attenuation;255
25.3.2;TRAP Protein;256
26;Chapter 22: Riboswitches;257
26.1;Mechanisms of Riboswitches;259
26.2;Selected References;260
27;Chapter 23: The Biological Fixation of Nitrogen;261
27.1;Control of Nitrogenase Synthesis and Activity;264
27.2;Selected References;266
27.2.1;General Reviews;266
27.2.2;Fe-Protein;266
27.2.3;Mo-Fe Protein;266
27.2.4;Fe-MoCo;266
27.2.5;Oxygen Relations of Nitrogen Fixation in Cyanobacteria;266
28;Chapter 24: How Biosynthetic Pathways have been Established;267
28.1;Use of Isotopes;267
28.2;Use of Auxotrophic Mutants;270
28.3;Enzymatic Analysis;272
28.4;Selected References;272
28.4.1;Isotopic Competition;272
28.4.2;Isolation of Auxotrophic Mutants;272
29;Chapter 25: The Aspartic Acid Family of Amino Acids: Biosynthesis;273
29.1;The Biosynthesis of Aspartic Acid and Asparagine;273
29.2;Biosynthesis of Lysine from Aspartate Semialdehyde in Bacteria;276
29.3;The Synthesis of Dipicolinic Acid, a Substance Present in the Spores of Gram-Positive Bacilli;278
29.4;The Reduction of Aspartate Semialdehyde to Homoserine, the Common Precursor of Methionine and Threonine;279
29.5;Biosynthesis of Methionine from Homoserine;279
29.6;S-Adenosylmethionine (SAM) Biosynthesis;284
29.7;Biosynthesis of Threonine from Homoserine;285
29.8;Biosynthetic Threonine Dehydratase;286
29.9;Isoleucine Biosynthesis;287
29.10;Summary of the Biosynthetic Pathway of the Aspartate Family of Amino Acids;288
29.10.1;Ectoine Biosynthesis;289
29.11;Selected References;289
29.11.1;Asparagine;290
29.11.2;Threonine Synthase;290
29.11.3;Diaminopimelate Decarboxylase;290
29.11.4;Methionine Biosynthesis; Direct Sulfhydrylation Pathway;290
30;Chapter 26: Regulation of the Biosynthesis of the Amino Acids of the Aspartic Acid Family in Enterobacteriacea;291
30.1;A Paradigm of Isofunctional and Multifunctional Enzymes and of the Allosteric Equilibrium;291
30.1.1;Two Aspartokinases in E. coli;292
30.1.2;The Threonine-Sensitive Homoserine Dehydrogenase of E. coli;294
30.1.3;Isolation of a Mutant Lacking the Lysine-Sensitive Aspartokinase and of Revertants Thereof;294
30.1.4;Evidence That the Threonine-Sensitive Aspartokinase and Homoserine Dehydrogenase of E. coli Are Carried by the Same Bifunctiona;297
30.1.5;The Binding of Threonine to Aspartokinase I-Homoserine Dehydrogenase I;297
30.1.6;The Binding of Pyridine Nucleotides to Aspartokinase I-Homoserine Dehydrogenase I;299
30.1.7;The Effects of Threonine on Aspartokinase I-Homoserine Dehydrogenase I Are Not Only Due to Direct Interactions;300
30.1.8;The Allosteric Transition of Aspartokinase I-Dehydrogenase I;302
30.1.9;Aspartokinase II-Homoserine Dehydrogenase II;305
30.1.10;Aspartokinase III;307
30.1.10.1;From Homoserine to Methionine;307
30.1.10.2;From Threonine to Isoleucine;308
30.1.10.3;Multifunctional Proteins;309
30.2;Regulations at the Genetic Level;310
30.2.1;The Threonine Operon;310
30.2.2;Regulation of the Lysine Regulon at the Genetic Level;312
30.2.3;Regulation of Methionine Biosynthesis at the Genetic Level;312
30.2.4;The Methionine Repressor;314
30.2.5;The metR Gene and Its Product;318
30.2.6;The Regulation of Isoleucine Synthesis at the Genetic Level;320
30.2.7;Appendix: More on Regulons;320
30.3;Selected References;321
30.3.1;Isofunctional Aspartokinases;321
30.3.2;Aspartokinases-Homoserine Dehydrogenases I and II. Structure and Regulation of Activity;321
30.3.3;The Threonine Operon and Its Regulation;322
30.3.4;Aspartokinase III. Crystallography;322
30.3.5;Regulation of Methionine Biosynthesis. The Methionine Repressor;322
30.3.6;Regulation of the Synthesis of the Branched-Chain Amino Acids;322
30.3.7;The Leucine-Lrp Regulon;322
31;Chapter 27: Other Patterns of Regulation of the Synthesis of Amino Acids of the Aspartate Family;323
31.1;Concerted Feedback Inhibition of Aspartokinase Activity in Rhodobacter capsulatus (Formerly Rhodopseudomonas capsulata);323
31.2;Pseudomonads;324
31.3;Specific Reversal of a Particular Feedback Inhibition by Other Essential Metabolites. The Case of Rhodospirillum rubrum;326
31.3.1;The Particular Case of Spore-Forming bacilli;327
31.4;Some Other Cases;330
31.5;Conclusion;330
31.6;Selected References;330
31.6.1;Concerted Feedback Inhibition;330
31.6.2;Pseudomonads;331
31.6.3;Rhodospirillum rubrum;331
31.6.4;Spore-Forming bacilli;331
32;Chapter 28: Biosynthesis of the Amino Acids of the Glutamic Acid Family and Its Regulation;332
32.1;The Biosynthesis of Glutamine;332
32.1.1;Biosynthesis of Glutamine: Cumulative Feedback Inhibition;332
32.1.2;Biosynthesis of Glutamine: The Covalent Modification of Glutamine Synthetase;334
32.1.3;Glutamine Synthetase Structure;335
32.1.4;Reversible Adenylylation of the Glutamine Synthetase;338
32.1.5;Regulation of Glutamine Synthetase Activity by Covalent Adenylylation;339
32.1.6;The Regulation of the Synthesis of Glutamine Synthetase also Involves the Two Forms of PII and UTase/UR;340
32.1.7;Glutamine Synthetase in Other Microorganisms;342
32.2;The Biosynthesis of Glutamate;344
32.2.1;Glutamate Dehydrogenase;344
32.2.2;Glutamate Synthase;344
32.3;Biosynthesis of Proline;345
32.3.1;Utilization of Proline;347
32.4;The Biosynthesis of Arginine and Polyamines;348
32.4.1;Biosynthesis of Arginine;348
32.4.2;Regulation of Arginine Biosynthesis at the Transcriptional Level;351
32.4.3;The Arginine Repressor;351
32.4.4;Polyamine Biosynthesis;352
32.4.5;Utilization of Arginine as Sole Nitrogen Source by B. subtilis;355
32.5;Nitric Oxide Synthase in Bacteria;356
32.6;The Biosynthesis of Lysine in Yeasts and Molds;356
32.6.1;The Aminoadipic Acid Pathway;357
32.7;Selected References;360
32.7.1;Glutamine Synthetase Activity and Its Regulation by Covalent Modification: Structure;360
32.7.2;Glutamine Synthetase: Regulation of Gene Expression;360
32.7.3;The Levels of Glutamine Synthetase Are also Regulated by Oxidation Followed by Proteolytic Degradation;360
32.7.4;Glutamate Synthase;360
32.7.5;Proline Biosynthesis;360
32.7.6;Arginine Biosynthesis and Regulation;361
32.7.7;The Arginine Repressor;361
32.7.8;The Methionine Salvage Pathway;361
32.7.9;Nitric Oxide Synthase;361
32.7.10;Aminoadipic Acid Pathway;361
33;Chapter 29: Biosynthesis of Amino Acids Derived from Phosphoglyceric Acid and Pyruvic Acid;362
33.1;Biosynthesis of Glycine and Serine;362
33.1.1;Regulation of Serine Hydroxymethyltransferase at the Transcriptional Level;364
33.2;Biosynthesis of Cysteine;365
33.2.1;O-Acetylation of Serine;367
33.2.2;Cysteine Synthesis in Methanogens;367
33.2.3;Allosteric Regulation of Cysteine Synthesis;368
33.2.4;Regulation of Cysteine Synthesis at the Genetic Level;368
33.3;Biosynthesis of Alanine;369
33.4;Biosynthesis of Valine;370
33.5;Biosynthesis of Leucine;372
33.6;Isoleucine Synthesis from Pyruvate;374
33.7;Regulation of Valine, Isoleucine and Leucine Biosynthesis;374
33.8;Selected References;375
33.8.1;Serine Biosynthesis;375
33.8.2;Serine Hydroxymethylase;376
33.8.3;Sulfite Reductase;376
33.8.4;Cysteine Synthesis in Methanogens;376
33.8.5;Valine and Leucine;376
33.8.6;Isoleucine Synthesis from Pyruvate;376
33.8.7;Aspartate-beta-Decarboxylase;376
34;Chapter 30: Selenocysteine and Selenoproteins;377
34.1;Outlook;377
34.2;Enzymes Containing Selenocysteine;378
34.2.1;Formate Dehydrogenases;378
34.2.2;The Glycine Reductase Complex;378
34.2.3;The Nicotinic Acid Hydroxylase of Clostridium barkeri;379
34.2.4;Hydrogenases;380
34.2.5;Xanthine Dehydrogenase;380
34.2.6;Acetoacetyl CoA Thiolase;381
34.2.7;Gene Products Involved in Selenocysteine Biosynthesis and Incorporation;381
34.2.8;Selenocysteine Synthase;382
34.2.9;Selenophosphate Synthetase;382
34.2.10;Selenocysteine Lyase;382
34.2.11;Selenocysteyl tRNA;382
34.2.12;Insertion Sequences (SECIS Elements);384
34.2.13;Selenocysteine and Archaea;384
34.3;Biochemical Function of the Selenocysteine Residue in Catalysis;385
34.4;Selected References;385
35;Chapter 31: Biosynthesis of Aromatic Amino Acids and Its Regulation;386
35.1;The Common Pathway (Shikimic Pathway);386
35.1.1;Formation of Shikimic Acid;386
35.1.2;Formation of Chorismic Acid;390
35.1.3;Physiological Aspects of the Regulation of the Common Pathway;391
35.1.4;Characteristics of the Common Pathway in Several Organisms;392
35.2;Biosynthesis of Phenylalanine and Tyrosine from Chorismic Acid;393
35.2.1;The tyrR Regulon;394
35.2.2;Regulation of the pheA Gene by Attenuation;395
35.2.3;Other Organisms: The Arogenate Pathway of Phenylalanine and Tyrosine Biosynthesis;395
35.2.4;Aspartate as a Presursor of Aromatic Amino Acids;396
35.3;The Biosynthesis of Tryptophan from Chorismic Acid;397
35.3.1;Anthranilate Synthase-Anthranilate Phosphoribosyltransferase;398
35.3.2;Phosphoribosylanthranilate Isomerase-Indoleglycerophosphate Synthase;399
35.3.3;Tryptophan Synthase;400
35.3.4;Regulation of Tryptophan Biosynthesis at the Genetic Level: The Tryptophan Repressor;404
35.3.5;A Unitary Model for Induction and Repression;406
35.3.6;Isolation of the Trp Repressor;406
35.4;Enterochelin (Enterobactin) Biosynthesis;408
35.4.1;The Synthesis of 2,3-Dihydroxybenzoic Acid;408
35.5;Selected References;410
35.5.1;The Common Pathway;410
35.5.2;Biosynthesis of Phenylalanine and Tyrosine;410
35.5.3;DKFP Pathway: Aspartate as a Precursor of Aromatic Amino Acids;410
35.5.4;TyrR;411
35.5.5;Tryptophan Synthesis;411
35.5.6;Tryptophan Repressor: Functional Aspects;411
35.5.7;Enterochelin;411
36;Chapter 32: The Biosynthesis of Histidine and Its Regulation;412
36.1;Regulation of Histidine Biosynthesis at the Genetic Level;415
36.2;Synthesis of Diphthamide, a Modified Histidine, by Archaea;420
36.3;Selected References;421
36.3.1;Histidine Biosynthesis and Its Regulation;421
36.3.2;PR-ATP Pyrophosphorylase;421
36.3.3;Attenuation;421
36.3.4;Diphthamide in Archaea;421
37;Chapter 33: The Biosynthesis of Nucleotides;422
37.1;The Biosynthesis of Pyrimidine Nucleotides;422
37.1.1;Synthesis of 5-Phosphoribosyl-1-Pyrophosphate (PRPP);422
37.1.2;Synthesis of Carbamylphosphate;423
37.1.3;The Synthesis of Cytidine and Uridine Triphosphates;425
37.1.4;Direct Utilization of Pyrimidines and of Their Derivatives;427
37.1.5;Aspartate Transcarbamylase of E. coli;427
37.1.6;The Aspartate Transcarbamylase of Other Organisms;433
37.1.7;Regulation of Pyrimidine Nucleotide Synthesis at the Genetic Level;434
37.2;The Biosynthesis of Purine Nucleotides;435
37.2.1;Biosynthesis of 5-Amino-4-Imidazole Carboxamide Ribonucleotide;435
37.2.2;Synthesis of Inosinic Acid;438
37.2.3;The Synthesis of Guanylic and Adenylic Acids;439
37.2.4;Remarks on the Control of Purine Nucleotide Biosynthesis;440
37.2.5;From Nucleoside Monophosphates to Nucleoside Diphosphates and Triphosphates;442
37.3;Selected References;442
37.3.1;Carbamylphosphate Synthetase;442
37.3.2;PRPP Synthetase;442
37.3.3;Aspartate Transcarbamylase;442
37.3.4;CAD Protein;443
37.3.5;Nucleoside Diphosphokinase;443
37.3.6;PRPP Amidotransferase;443
38;Chapter 34: The Biosynthesis of Deoxyribonucleotides;444
38.1;The Formation of Deoxyribonucleoside Diphosphates from Ribose Nucleoside Diphosphates;444
38.2;The Ribosenucleoside Diphosphate (NDP) Reductase System of E. coli;444
38.2.1;Thioredoxin and Thioredoxin Reductase;444
38.2.2;Ribonucleoside Reductase;447
38.3;Regulation of the Activity of Ribonucleoside Diphosphate Reductase;449
38.4;dCMP Deaminase and Thymidylate Synthase;450
38.5;dUTPase;452
38.6;The Ribonucleoside Phosphate Reductase of Other Organisms;452
38.7;A Ribonucleotide Triphosphate Reductase Reaction in E. coli Grown Under Anaerobic Conditions;453
38.8;The Synthesis of Deoxyribonucleoside Triphosphates from the Diphosphates;454
38.9;Organization of DNA Precursor Synthesis in Eukaryotic Cells;454
38.10;Selected References;455
38.10.1;Thioredoxin and Glutaredoxin;455
38.10.2;Ribonucleoside Diphosphate and Triphosphate Reductases;455
38.10.3;Thymidylate Kinases;455
38.10.4;Nucleoside Diphosphate Kinase;455
39;Chapter 35: Biosynthesis of Some Water-Soluble Vitamins and of Their Coenzyme Forms;456
39.1;Biosynthesis of Thiamin and Cocarboxylase;456
39.2;Control of Thiamin Biosynthesis;458
39.3;Biosynthesis of Riboflavin;460
39.4;Biosynthesis of Nicotinamide, NAD+ and NADP+;462
39.5;Regulation of the Biosynthesis of Nicotinamide and Its Derivatives;465
39.6;NAD+ and the ADP-Ribosylation of Proteins;466
39.7;Biosynthesis of Para-Aminobenzoic Acid, of Folic Acid and Its Derivatives;467
39.8;Biosynthesis of Vitamin B6 Pyridoxine, and of Its Derivatives, Pyridoxal, Pyridoxamine and Pyridoxal Phosphate;470
39.9;Biosynthesis of Biotin, Biotin CO2, and Biocytin;472
39.10;The Biotin Operon and Its Repressor;475
39.11;Biosynthesis of Lipoic Acid;476
39.12;Biosynthesis of Pantothenate and Coenzyme A;477
39.12.1;The Synthesis of Pantothenic Acid;477
39.12.2; The Synthesis of Coenzyme A from Pantothenic Acid;479
39.12.3; The Acyl Carrier Protein;480
39.13;The Biosynthesis of Inositol;480
39.14;Biosynthesis of Pyrroloquinoline Quinone;480
39.15;Selected References;483
39.15.1;Thiamin;483
39.15.2;Riboflavin;483
39.15.3;Pyridoxal Phosphate;483
40;Chapter 36: Biosynthesis of Carotene, Vitamin A, Sterols, Ubiquinones and Menaquinones;484
40.1;Synthesis of the Common Precursor;484
40.2;The Non-mevalonate Pathway of Isoprenoid Precursor (Dimethylallyl Pyrophosphate) Biosynthesis;486
40.3;Synthesis of beta-Carotene, Carotenoids and Vitamin A;488
40.3.1;Synthesis of the Carotenoids;488
40.3.2;Regulation of Carotenoid Synthesis;491
40.3.3;Synthesis of Vitamin A;492
40.4;Synthesis of Sterols;492
40.5;The Biosynthesis of Ubiquinones and Menaquinones;494
40.6;Selected References;497
40.6.1;Mevalonate and Non-mevalonate Pathways;497
40.6.2;Biosynthesis of Water-Soluble Vitamins;498
40.6.3;Pyridoxine;498
40.6.4;Carotenoids;498
40.6.5;Menaquinones;498
41;Chapter 37: Biosynthesis of the Tetrapyrrole Ring System;499
41.1;Synthesis of Protoporphyrin;499
41.2;Synthesis of Heme from Protoporphyrin;504
41.3;Heme Biosynthesis in Archaea;505
41.4;Synthesis of Chlorophyll from Protoporphyrin;505
41.5;Biosynthesis of the Phycobilin Chromophores. Chromatic Adaptation;508
41.6;A Type of Chromatic Adaptation Under Conditions of Sulfur Starvation;511
41.7;Selected References;512
41.7.1;The Tetrapyrroles;512
41.7.2;ALA Synthesis;512
41.7.3;Heme Biosynthesis in Archaea;512
41.7.4;Phycobilins;512
41.7.5;Complementary Chromatic Adaptation;513
41.7.6;The Effect of Sulfur Starvation on Chromatic Adaptation;513
42;Chapter 38: Biosynthesis of Cobalamins Including Vitamin B12;514
42.1;Cobinamide Biosynthesis;518
42.2;From GDP-Cobinamide to Cobalamin;520
42.3;Selected References;521
42.3.1;Threonine Kinase and the Origin of the Aminopropanol Residue;521
42.3.2;Origin of the Dimethylbenzimidazole;521
42.3.3;Many References to Previous Work Will be Found in the Last Two Papers;522
43;Chapter 39: Interactions Between Proteins and DNA;523
43.1;DNA-Binding Proteins;523
43.2;Study of the Protein-DNA Complexes;525
43.3;Some Other Types of DNA-Binding Proteins;531
43.4;Selected References;534
43.4.1;Trp Repressor. Structural Aspects;534
43.4.2;Met Repressor;534
44;Chapter 40: Evolution of Biosynthetic Pathways;535
44.1;Principles of Protein Evolution;535
44.2;Two Theories for the Evolution of Biosynthetic Pathways;535
44.3;The Methionine and Cysteine Biosynthetic Pathways;536
44.4;The Threonine, Isoleucine, Cysteine and Tryptophan Biosynthetic Pathways;539
44.5;The Evolutionary Pathway Leading to the Three Isofunctional Aspartokinases in Escherichia coli;545
44.6;Transmembrane Facilitators;552
44.7;DNA-Binding Regulator Proteins;553
44.8;Selected References;553
44.8.1;Two Books;553
44.8.2;Two Different Theories on the Evolution of Biosynthetic Pathways;553
44.8.3;Common Origin of Cystathionine-gamma-Synthase and Cystathionase;553
44.8.4;Common Origin of Threonine Synthase, Threonine Dehydratase, D-Serine Dehydratase, and the B Chain of Tryptophan Synthase;554
44.8.5;Comparison of arg Genes with Homologous and Analogous Enzymes;554
44.8.6;Evolution of the E. coli Aspartokinases and Homoserine Dehydrogenases;554
44.8.7;Structural and Evolutionary Relationships Between E. coli Aspartokinase-Homoserine Dehydrogenases and Monofunctional Homoserine;554
44.8.8;Superfamily of Transmembrane Facilitators;554
44.8.9;DNA-Binding Regulator Proteins;554
45;Index;555




