Buch, Englisch, 629 Seiten, Format (B × H): 161 mm x 242 mm, Gewicht: 2380 g
Buch, Englisch, 629 Seiten, Format (B × H): 161 mm x 242 mm, Gewicht: 2380 g
Reihe: Systems & Control: Foundations & Applications
ISBN: 978-0-8176-3683-8
Verlag: Birkhauser Boston
This new text/reference is an excellent resource for the foundations and applications of control theory and nonlinear dynamics. All graduates, practitioners, and professionals in control theory, dynamical systems, perturbation theory, engineering, physics and nonlinear dynamics will find the book a rich source of ideas, methods and applications. With its careful use of examples and detailed development, it is suitable for use as a self-study/reference guide for all scientists and engineers.
Zielgruppe
Research
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Mathematik | Informatik EDV | Informatik Informatik
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Systemtheorie
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Überwachungstechnik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
Weitere Infos & Material
1 Introduction.- 2 Dynamics, Perturbations, and Control.- 2.1 Perturbations of Complex behavior.- 2.2 Approximation of Complex Systems.- 2.3 Generic Behavior of Perturbations.- 2.4 Stability Boundaries and Multistability.- 2.5 Reachability in Control Systems.- 2.6 Linear and Nonlinear Stability Radii.- 2.7 Stabilization of Bilinear Systems.- 2.8 The Lyapunov Spectrum of Matrices.- I Global Theory.- 3 Control Sets.- 4 Control Flows and Limit behavior.- II Linearization Theory.- 5 Linear Flows on Vector Bundles.- 6 Bilinear Systems on Vector Bundles.- 7 Linearization at a Singular Point.- III Applications.- 8 One-Dimensional Control Systems.- 9 Examples for Global behavior.- 10 Examples for the Spectrum.- 11 Stability Radii and Robust Stability.- 12 Open and Closed Loop Stabilization.- 13 Dynamics of Perturbations.- IV Appendices.- A Geometric Control Theory.- A.1 Differentiable Manifolds and Vector Fields.- A.2 Basic Definitions for Control Systems.- A.3 The Orbit Theorem.- A.4 Local Accessibility.- A.5 Notes.- B Dynamical Systems.- B.1 Vector Bundles.- B.2 Morse Decompositions, Attractors, Chains.- B.3 Ergodic Theory.- B.4 Notes.- C Numerical Computation of Orbits.- C.1 Orbits and Approximately Invariant Sets.- C.2 Computing Approximately Invariant Sets.- C.3 Computation via Time Optimal Control.- C.4 Notes.- D.1 Problem Formulation and Main Results.- D.2 Discounted and Average Functional.- D.3 Approximation of the Spectrum.- D.4 The Hamilton-Jacobi-Bellman Equation.- D.5 Discounted Optimal Control Problems.- D.6 Notes.