E-Book, Englisch, Band Volume 16, 550 Seiten, Web PDF
Cotsaftis / Vernadat Advances in Factories of the Future, CIM and Robotics
1. Auflage 2013
ISBN: 978-1-4832-9150-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band Volume 16, 550 Seiten, Web PDF
Reihe: Manufacturing Research and Technology
ISBN: 978-1-4832-9150-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Productivity enhancement is a major concern for all manufacturing enterprises. Productivity enhancement can be achieved in many ways and many facets of its problems have been investigated over the last decades. A number of methods, tools and technologies have emerged to efficiently increase productivity and rationalize management of manufacturing enterprises. International experts from both academia and industry share their experiences in this collection of articles, contributing to the latest advances in the many facets of productivity enhancement in manufacturing enterprises. Themes and visions are detailed on factories of the future, new management approaches, manufacturing system integration and manufacturing information systems. These technical areas can be grouped into four major sections: Factories of the future; Techniques and tools for automated manufacturing; Robotics; and Industrial applications. The papers illustrate a pattern of valuable and interesting approaches to the fascinating problem of designing a new generation of robots with high enough performance capabilities to be used in an industrial context.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Advances in Factories of the Future, CIM and Robotics;4
3;Copyright Page;5
4;FOREWORD;6
5;Table of Contents;10
6;PART 1: FACTORIES OF THE FUTURE;14
6.1;Chapter 1. Future Factories and Today's Organizations;16
6.1.1;Abstract;16
6.1.2;1. INTRODUCTION;16
6.1.3;2. THEORETICAL FRAMEWORK;17
6.1.4;3. CIM AS AN INTEGRATED MANUFACTURING STRATEGY;19
6.1.5;4. CONCLUSIONS AND IMPLICATIONS FOR FUTURE FACTORIES;24
6.1.6;5. REFERENCES;25
6.2;Chapter 2. Methodologies for the regeneration of manufacturing competitiveness;26
6.2.1;1. INTRODUCTION;26
6.2.2;2. THE SPECIFICATION OF A METHODOLOGY;27
6.2.3;3. METHODOLOGY DEVELOPMENT;29
6.2.4;4. THE METHODOLOGY;29
6.2.5;5. THE IDENTIFICATION OF A THEME;33
6.2.6;6. CONCLUSION;33
6.2.7;REFERENCES;33
7;PART 2: NEW MANAGEMENT APPROACHES;36
7.1;CHAPTER 3. PROJECT DEFINITION: SOME METHODOLOGICAL PROBLEMS;38
7.1.1;Abstract;38
7.1.2;Keywords;38
7.1.3;1. THE BACKWARD EFFECT OF SOLUTIONS ON PROBLEM DEFINITIONS;39
7.1.4;2. THE DEFICIENCIES OF O.R. FORMULATION OF THE PROJECT SCHEDULEPROBLEM;41
7.1.5;3. SPECIFIC PROBLEMS SET BY THE HIERARCHIC AL APPRO ACH;43
7.1.6;4. RISK ANALYSIS IN PROJECTS DEFINITION;46
7.1.7;References;46
7.2;Chapter 4. A critical assessment of the modelling and analysis of justin-time manufacturing systems;48
7.2.1;Abstract;48
7.2.2;1. INTRODUCTION;48
7.2.3;2. CRITICAL ASSESSMENT OF THE EXISTING JIT LITERATURE;48
7.2.4;3. FUTURE RESEARCH DIRECTIONS ON JIT MODELLING ANDANALYSIS;51
7.2.5;4. CONCLUDING REMARKS;55
7.2.6;REFERENCES;55
7.3;Chapter 5. Modeling and evaluation of teamwork;58
7.3.1;Abstract;58
7.3.2;1. INTRODUCTION;58
7.3.3;2. DEFINITION OF TEAM AND THE BEHAVIOR MODEL FOR TEAM MEMBERS;59
7.3.4;3. THE EVALUATION FUNCTION OF TEAM SYSTEM;60
7.3.5;4. THE CHARACTERISTIC EVALUATION FUNCTION AND THE EVALUATION OF THE TEAM SYSTEM;63
7.3.6;5. COORDINATION;64
7.3.7;6. AN EXAMPLE OF TEAMWORK IN A MANUFACTURING SYSTEM;65
7.3.8;7. CONCLUSION;67
7.3.9;ACKNOWLEDGEMENT;67
7.3.10;REFERENCES;67
8;PART 3: CIM MODELLING;68
8.1;Chapter 6. A Methodology To Improve Manufacturing Systems Integration;70
8.1.1;Abstract;70
8.1.2;KEYWORDS;70
8.1.3;1. INTRODUCTION;70
8.1.4;2. METHODOLOGY;71
8.1.5;3. SUMMARY OF AN INDUSTRIAL APPLICATION;75
8.1.6;4. Further Planned Developments of the Methodology;77
8.1.7;5. Conclusions;78
8.1.8;References;78
8.2;CHAPTER 7. PLANNING OF ENTERPRISE-RELATED CIM STRUCTURES;80
8.2.1;Abstract;80
8.2.2;1. INTRODUCTION;80
8.2.3;2. IMPACT OF MODELLING FOR THE PLANNING PROCESS;81
8.2.4;3. INTEGRATED ENTERPRISE MODELLING;81
8.2.5;4. REFERENCE MODEL FOR ENTERPRISE RELATED CIM-PLANNING ANDINTRODUCTION;87
8.2.6;5. CONCLUSION;88
8.2.7;6. REFERENCES;89
8.3;CHAPTER 8. ADVANCED MODELLING APPROACH TO CIM SYSTEMS;90
8.3.1;Abstract;90
8.3.2;Keywords;90
8.3.3;1. INTRODUCTION;90
8.3.4;2. CONSTRUCTS OF THE INFORMATION VIEW;91
8.3.5;3. CONSTRUCTS OF THE RESOURCE VIEW;92
8.3.6;4. CONSTRUCTS OF THE FUNCTION VIEW;93
8.3.7;5. CONSTRUCTS OF THE ORGANISATION VIEW;96
8.3.8;6. EXAMPLE;97
8.3.9;7. PERFORMANCE ANALYSIS OF ENTERPRISE MODELS;99
8.3.10;8. CONCLUSION;102
8.3.11;9. REFERENCES;102
8.4;Chapter 9. A Method for Developing CIM-Systems withColoured Petri Nets;104
8.4.1;Abstract;104
8.4.2;Keywords;104
8.4.3;1 INTRODUCTION;104
8.4.4;2 SYSTEM AND SYSTEM ANALYSIS;105
8.4.5;3 COLOURED PETRI NETS;106
8.4.6;4 PROPOSED METHOD;107
8.4.7;5 CIM AS AN EXAMPLE FOR A COMPLEX SYSTEM;109
8.4.8;6 CONCLUSIONS;110
8.4.9;6 REFERENCES;111
9;PART 4: INFORMATION SYSTEMS;114
9.1;CHAPTER 10. MULTIPLE REPRESENTATION, MULTIPLE DEFINITION AND OBJECT ORIENTEDREPRESENTATION;116
9.1.1;Abstract;116
9.1.2;Key-Words;116
9.1.3;1. INTRODUCTION;116
9.1.4;2. DATA MODELLING IN CAD/CAM APPLICATIONS;118
9.1.5;3. MULTIPLE REPRESENTATION AND MULTIPLE DEFINITION MODELLING;119
9.1.6;4. CONCLUSION;123
9.1.7;5. BIBLIOGRAPHY;124
9.2;CHAPTER 11. CONTROL AND MANAGEMENT OF INFORMATIONFLOW FOR COMPUTER INTEGRATEDMANUFACTURING;126
9.2.1;Abstract;126
9.2.2;1. Introduction;126
9.2.3;2. INSIM (INformation System for Integrated Manufacturing);127
9.2.4;3. Structured Modeling of the Domain Knowledge - UpdatedPetri Nets;128
9.2.5;4. Modeling Methodology;130
9.2.6;5. Knowledge Verification;133
9.2.7;6. Conclusions;134
9.2.8;References;134
10;PART 5: KNOWLEDGE-BASED SYSTEMSFOR MANUFACTURING SYSTEM SIMULATION;136
10.1;CHAPTER 12. PRODUCTIVITY ENHANCEMENT FOR PROCESS SIMULATIONUSING KNOWLEDGE BASED APPROACH1;138
10.1.1;ABSTRACT;138
10.1.2;Keywords;138
10.1.3;1 Introduction;139
10.1.4;2 Subsystems of IP SE;141
10.1.5;3 Conclusions;145
10.1.6;REFERENCES;147
10.2;CHAPTER 13. KBAMS: A KNOWLEDGE BASED MODELING ANDSIMULATION ENVIRONMENT FOR MANUFACTURING.;148
10.2.1;Abstract;148
10.2.2;1. Introduction;148
10.2.3;2. Approach;149
10.2.4;3. Factory Modeling Concepts;150
10.2.5;4. The Simulation Engine;153
10.2.6;5. A Semiconductor Modeling Example;155
10.2.7;6. Conclusion;156
10.2.8;Bibliography;157
11;PART 6: CAEDCOMPUTER-AIDED ENGINEERING AND DESIGN;158
11.1;Chapter 14. A new element for symmetrically laminated cross-ply beamsbased on a higher-order theory;160
11.1.1;Abstract;160
11.1.2;Keywords;160
11.1.3;1. INTRODUCTION;160
11.1.4;2. THE BEAM THEORY;161
11.1.5;3. NUMERICAL RESULTS;165
11.1.6;4. SUMMARY AND CONCLUSIONS;168
11.1.7;5. REFERENCES;169
11.2;Chapter 15. A Post-processor for adaptive meshing for problems withsteep gradient areas;170
11.2.1;Abstract;170
11.2.2;1. ERROR IN CONSTITUTIVE RELATION;170
11.2.3;2. APPLICATION TO FINITE ELEMENT COMPUTATION;171
11.2.4;3. H-VERSION OF AN OPTIMAL MESH PROCEDURE FOR STEEPGRADIENTS;172
11.2.5;5. CONCLUSION;178
11.2.6;6. REFERENCES;178
11.3;CHAPTER 16. CONFIGURATION OF TECHNICAL PRODUCTSUSING A KNOWLEDGE-BASED MODEL CONCEPT;180
11.3.1;Abstract;180
11.3.2;Keywords;180
11.3.3;1 Introduction;180
11.3.4;2 A Model of the Configuration Process;181
11.3.5;3 Knowledge Types of the Configuration Domain;182
11.3.6;4 The Course of Configuration Using the ModelConcept;185
11.3.7;5 MoKon - A Prototypic Model-Based Tool forBuilding Configuration Systems;186
11.3.8;6 Conclusion;188
11.3.9;References;189
11.4;Chapter 17. Circuit-breaker design using an integrated cad/cae tool;190
11.4.1;Abstract;190
11.4.2;1 Introduction;190
11.4.3;2 Computational methodology;191
11.4.4;3 An interactive CAD/CAE tool;193
11.4.5;4 Validation of the model;195
11.4.6;5 Benefits of the CAD/CAE tool;197
11.4.7;6 Conclusion;198
11.4.8;References;198
12;PART 7: METAL CUTTINGAND ASSEMBLY PROCESSES;200
12.1;Chapter 18. Interactive Tool for Decision-Making in Cutting;202
12.1.1;Abstract;202
12.1.2;1 THE INDUSTRIAL PROCESS;202
12.1.3;2 MODELISATION;204
12.1.4;3 THE DECISION SUPPORT SYSTEM;206
12.1.5;4 RESULTS;208
12.1.6;5 FURTHER RESEARCH;210
12.1.7;ACKNOWLEDGEMENTS;210
12.2;CHAPTER 19. SOME STRATEGIES IN AUTOMATED ASSEMBLY OF SMALLRIGID PARTS BASED ON FORCE FEEDBACK;212
12.2.1;Abstract;212
12.2.2;Keywords;212
12.2.3;INTRODUCTION;212
12.2.4;THE CONCEPT OF RIGID PART ASSEMBLY AND POSSIBLESTRATEGIES BASED ON FORCE FEEDBACK;213
12.2.5;STRATEGY BASED ON THE MEASUREMENT OF THE VERTICALCOMPONENT (Fz) OF THE INSERTION FORCE;214
12.2.6;STRATEGY BASED ON THE MEASUREMENT OF TILTING MOMENTS(.., ..) IN ADDITION TO THE VERTICAL INSERTION FORCE (Fz);215
12.2.7;THE MAXIMUM ADMISSIBLE ERROR AND THE MAGNITUDE OF THEREQUIRED CORRECTION;216
12.2.8;DISCUSSION;216
12.2.9;CONCLUSION;219
12.2.10;NOMENCLATURE;219
12.2.11;ACKNOWLEDGMENT;219
12.2.12;REFERENCES;220
12.2.13;APPENDIX A;220
12.2.14;APPENDIX B;221
12.3;Chapter 20. Subassemblies and common fitting nodes in determination ofassembly sequences;222
12.3.1;Abstract;222
12.3.2;1. INTRODUCTION;222
12.3.3;2. GENERAL METHOD;222
12.3.4;3. FUNCTIONAL LIAISONS MODEL;223
12.3.5;4. CONTACT LIAISONS;228
12.3.6;5. FITTING LIAISONS;228
12.3.7;6. COMMON CONTACT NODES;229
12.3.8;7. MODELIZATION OF FIXING NODES;229
12.3.9;8. REFERENCES;231
13;PART 8: MANUFACTURING CELL LAYOUT;232
13.1;Chapter 21. A generalized approach of the part machine grouping problem forthe design of cellular manufacturing systems;234
13.1.1;Abstract;234
13.1.2;Keywords;234
13.1.3;1. INTRODUCTION;234
13.1.4;2. REVIEW OF THE CELLULAR MANUFACTURING APPROACHES;235
13.1.5;3. PROPOSED APPROACH;236
13.1.6;5. CONCLUSION;241
13.1.7;REFERENCES;241
13.2;CHAPTER 22. THE INTRA-CELL LAYOUT PROBLEM IN AUTOMATEDMANUFACTURING SYSTEMS;244
13.2.1;Abstract;244
13.2.2;Keywords;244
13.2.3;1. INTRODUCTION;244
13.2.4;2. PROBLEM FORMULATION;245
13.2.5;3. LITERATURE REVIEW;245
13.2.6;4. A TWO-STAGE APPROACH TO THE MACHINE LAYOUT PROBLEM;247
13.2.7;5. CONCLUSION;255
13.2.8;6. REFERENCES;255
13.3;CHAPTER 23. WORKSHOP LAYOUT GUIDED BY NEURAL NETWORKS;258
13.3.1;ABSTRACT;258
13.3.2;KEYWORDS;258
13.3.3;INTRODUCTION;258
13.3.4;1 NEURAL NETWORKS;258
13.3.5;2 GENERAL ARCHITECTURE OF THE SYSTEM;260
13.3.6;3 DESCRIPTION;263
13.3.7;CONCLUSION;267
13.3.8;REFERENCES;267
14;PART 9: SCHEDULING ANDMULTI-LEVEL CONTROL OF FMS;268
14.1;CHAPTER 24. SCHEDULING PROBLEM IN SOME PRODUCTION PROCESSES;270
14.1.1;Abstract;270
14.1.2;Keywords;270
14.1.3;1. Introduction;270
14.1.4;2. Problem statement;271
14.1.5;3. Computational complexity;272
14.1.6;4. Heuristic method;273
14.1.7;5. Computational experience;276
14.1.8;References;277
14.2;Chapter 25. Evaluation Methods for a Distributed Intelligent Control Architecture : case of IntegratedManufacturing Systems;278
14.2.1;Abstract;278
14.2.2;Keywords;278
14.2.3;1. INTRODUCTION;278
14.2.4;2. CHARACTERIZATION OF THE PROBLEM DOMAIN;278
14.2.5;3. DESIRED CHARACTERISTICS OF EVALUATION METHODOLOGIES FOR THEDOMAIN;281
14.2.6;4. EVALUATION METHODS;282
14.2.7;5. AN INSTANCE OF SCOPE PROBLEM SOLVING;283
14.2.8;6. EVALUATION OF SCOPE;287
14.2.9;7. CONCLUSION;288
14.2.10;8. REFERENCES;288
14.3;CHAPTER 26. A HYBRID MODEL OF HIERARCHICAL CONTROLARCHITECTURE IN AUTOMATED MANUFACTURING SYSTEMS;290
14.3.1;Abstract;290
14.3.2;1. INTRODUCTION;290
14.3.3;2. FUNCTIONAL MANUFACTURING SYSTEMS;293
14.3.4;3. EXTENSIONAL EQUALITY PROPERTY;294
14.3.5;4. CASE STUDY;295
14.3.6;5. CONCLUSIONS;298
14.3.7;6. ACKNOWLEDGMENT;298
14.3.8;7. REFERENCES;298
15;PART 10: FMS ANALYSIS WITH PETRI NETS;300
15.1;CHAPTER 27. MODULARIZATION AND PROPERTIES OFFLEXIBLE MANUFACTURING SYSTEMS;302
15.1.1;Abstract;302
15.1.2;Keywords;302
15.1.3;1. Introduction;302
15.1.4;2. Colored Timed Petri Net (CTPN);303
15.1.5;3. Modularize the FMS by CTPN;304
15.1.6;4. Structural Properties of the FMS;310
15.1.7;5. Conclusion;310
15.1.8;Acknowledgment;310
15.1.9;References;310
15.2;CHAPTER 28. TASK-DRIVEN MULTILEVEL CONTROL OF FMS;312
15.2.1;Abstract;312
15.2.2;Keywords;312
15.2.3;1. INTRODUCTION;312
15.2.4;2. BASIC MODELS;313
15.2.5;3. MODELLING FMS FROM EVENT LEVEL AND TASK LEVEL;314
15.2.6;4. MULTI-LEVEL CONTROL STRUCTURE FOR FMS;318
15.2.7;5. FORMULATION OF THE MULTILEVEL CONTROL PROBLEM;320
15.2.8;6. CONCLUSION;322
15.2.9;7. REFERENCES;323
15.3;CHAPTER 29. FLEXIBLE MACHINING CELL CONTROL WITH THE MODIFIED PETRI NET METHODOLOGY;324
15.3.1;Abstract;324
15.3.2;Keywords;324
15.3.3;1. INTRODUCTION;324
15.3.4;2. CELL CHARACTERISTICS;325
15.3.5;3. EVALUATION OF MODIFIED PETRI NETS FOR THE MODULAR DESIGN OF FLEXIBLEMANUFACTURING CELLS;325
15.3.6;4. CONCLUSION;333
15.3.7;5. REFERENCES;333
16;PART 11: FAULT DIAGNOSIS AND MAINTENANCE;334
16.1;Chapter 30. A Hybrid Model for Fault Diagnosis in Manufacturing Systems;336
16.1.1;Abstract;336
16.1.2;Keywords;336
16.1.3;1. INTRODUCTION;336
16.1.4;2. PERFECT AND IMPERFECT TESTS SEQUENCES;337
16.1.5;3. INTEGRATION OF STRUCTURAL RELATIONSHIP IN TESTSSEQUENCE GENERATION;340
16.1.6;4. ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS;342
16.1.7;5. CONCLUSION;344
16.1.8;REFERENCES;344
16.2;Chapter 31. Availability Optimization of Randomly Failing Equipments;346
16.2.1;Abstract;346
16.2.2;Keywords;346
16.2.3;1. INTRODUCTION;346
16.2.4;2. BASIC CONCEPTS;347
16.2.5;3. MODELING AND EVALUATING THE AVAILABILITY OF SPECIFICSTRUCTURES;348
16.2.6;4. REDUNDANCY CONTRIBUTION;352
16.2.7;5. PREVENTIVE MAINTENANCE CONSIDERATIONS;353
16.2.8;6. OTHER CONTRIBUTIONS;355
16.2.9;7. CONCLUSION;355
16.2.10;8. REFERENCES;355
17;PART 12: ROBOTICS SYSTEM REPRESENTATION;356
17.1;Chapter 32. Recursive Flexible Multibody DynamicsUsing Spatial Operators;358
17.1.1;Abstract;358
17.1.2;1. Introduction;358
17.1.3;2. Equations of Motion;358
17.1.4;3. Composite Body Forward Dynamics Algorithm;365
17.1.5;4. Factorization and Inversion of the Mass Matrix;366
17.1.6;5. Articulated Body Forward Dynamics Algorithm;367
17.1.7;6. Computational Cost;369
17.1.8;7. Conclusions;369
17.1.9;References;370
18;PART 13: COLLISION AVOIDANCEAND TRAJECTORY GENERATION;372
18.1;CHAPTER 33. A COLLISION AVOIDANCE METHOD FOR MOBILE ROBOTS;374
18.1.1;Abstract;374
18.1.2;Keywords;374
18.1.3;1. Introduction;374
18.1.4;2. Statement of the problem, notations;375
18.1.5;3. Collision avoidance principle;376
18.1.6;4. Selection of an admissible safe displacement;378
18.1.7;5) Example;382
18.1.8;6 Conclusion;383
18.1.9;7. References;383
18.2;CHAPTER 34. ON THE CALIBRATION MODEL AND METHOD FORIMPROVING ROBOT ACCURACY;384
18.2.1;Abstract;384
18.2.2;Keywords;384
18.2.3;1. INTRODUCTION;384
18.2.4;2. CALIBRATION MODELS AND ACCURACY SOFTWARE;385
18.2.5;3. Relative Calibration Method;389
18.2.6;4. CONCLUSIONS;395
18.2.7;Acknowledgements;396
18.2.8;References;396
18.3;CHAPTER 35. OPTIMAL TRAJECTORY GENERATION OF SINGLE-ROBOTAND TWO-ROBOT CONTACT OPERATIONS;398
18.3.1;Abstract;398
18.3.2;Keywords;398
18.3.3;1. INTRODUCTION;398
18.3.4;2. PROBLEM STATEMENT;400
18.3.5;3. Solution procedures;404
18.3.6;4. EXAMPLE;406
18.3.7;5. RESULTS;407
18.3.8;6. CONCLUSIONS;408
18.3.9;Acknowledgement;408
18.3.10;References;408
18.4;CHAPTER 36. ON THE FEASIBILITY OF CONTINUOUS TRAJECTORIES FORREDUNDANT MANIPULATORS IN CLUTTERED ENVIRONMENTS;410
18.4.1;Abstract;410
18.4.2;Keywords;410
18.4.3;1. INTRODUCTION;410
18.4.4;2. DEFINITION AND KINEMATICS OF A REDUNDANT ROBOT;411
18.4.5;3. DESCRIPTION OF THE METHOD;412
18.4.6;4. RESULTS;415
18.4.7;5. CONCLUSIONS;418
18.4.8;REFERENCES;419
18.5;Chapter 37. Polyhedron placement for planar motions;420
18.5.1;Abstract;420
18.5.2;Keywords;420
18.5.3;1 INTRODUCTION;420
18.5.4;2 THE POLYGONAL CASE;422
18.5.5;3 THE POLYHEDRAL CASE;423
18.5.6;4 EXPERIMENTAL RESULT;428
18.5.7;5 Conclusion;431
18.5.8;Acknowledgements;431
18.5.9;References;431
19;PART 14: ROBOTICS SYSTEM CONTROL;432
19.1;CHAPTER 38. MODEL-BASED VARIABLE-STRUCTURE ADAPTIVE CONTROL OFROBOT MANIPULATORS;434
19.1.1;Abstract;434
19.1.2;Keywords;434
19.1.3;1. INTRODUCTION;434
19.1.4;2. DEVELOPMENT OF MODEL-BASED VS ADAPTIVE CONTROL ALGORITHM;435
19.1.5;3. FEATURES OF MODEL-BASED VS ADAPTIVE CONTROL SCHEME;437
19.1.6;4. EXPERIMENTAL STUDY;438
19.1.7;5. CONCLUSION;441
19.1.8;6. REFERENCES;441
19.2;Chapter 39. Adaptive Control for Manipulators with ElasticJoints : Application of Passive Systems Approach;448
19.2.1;Abstract;448
19.2.2;Key Words;448
19.2.3;1 Introduction;448
19.2.4;2 Model of an elastic joint manipulator;449
19.2.5;3 Trajectory model and oscillation damping;450
19.2.6;4 Application of the passive systems approach;452
19.2.7;5 Comments on the simulation results;457
19.2.8;6 Conclusion;457
19.2.9;References;458
19.3;CHAPTER 40. ROBUST POSITION CONTROL OFROBOT MANIPULATORS;462
19.3.1;Abstract;462
19.3.2;Keywords;462
19.3.3;1 Introduction;462
19.3.4;2 Model Reference Control with disturbance observer:main results;463
19.3.5;3 Robot control with disturbance observer;467
19.3.6;4 Simulation results;471
19.3.7;5 Conclusion;472
19.3.8;References;472
19.4;CHAPTER 41. CARTESIAN-BASED ITERATIVE LEARNING CONTROL OF MANIPULATORS FORCONSTRAINED MOTION;474
19.4.1;Abstract;474
19.4.2;Keywords;474
19.4.3;I. INTRODUCTION;474
19.4.4;II. CARTESIAN-BASED DISCRETE LEARNING CONTROLLER;475
19.4.5;III. CONVERGENCE OF CARTESIAN-BASED DISCRETE CONTROLLER;477
19.4.6;IV. EXTENSION OF LEARNING ALGORITHM TO HYBRID POSITION/FORCE CONTROL;479
19.4.7;V. SIMULATION RESULTS;483
19.4.8;VI CONCLUSION;484
19.4.9;REFERENCES;485
19.5;CHAPTER 42. ADAPTIVE IMPEDANCE CONTROL FOR COMPLIANT MOTIONIN PASSIVE ENVIRONMENT;488
19.5.1;Abstract;488
19.5.2;Keywords;488
19.5.3;1. Introduction;488
19.5.4;2. System modelling and properties;489
19.5.5;3. Adaptive force position control;493
19.5.6;4. Simulations and Conclusion;496
19.5.7;REFERENCES;497
20;PART 15: INDUSTRIAL APPLICATIONS;500
20.1;CHAPTER 43. STEEL COILS SCHEDULING IN A FLOW-SHOPWITH PARALLEL TOOLS AND TIGHT CONSTRAINTS;502
20.1.1;Abstract;502
20.1.2;Keywords;502
20.1.3;1. INTRODUCTION;502
20.1.4;2. DESCRIPTION OF THE PROBLEM CONSTRAINTS;503
20.1.5;3. DESCRIPTION OF THE DECOMPOSITION APPROACH FOR SHORT TERM PROBLEM;506
20.1.6;4. CONCLUSION;508
20.1.7;5. REFERENCES;508
20.2;Chapter 44. Highly flexible automated and integrated bricklaying systems forsteel-converters refractory linings;510
20.2.1;Abstract;510
20.2.2;Keywords;510
20.2.3;1. OUTLINE OF THE PROBLEM;510
20.2.4;2. BASIC PRINCIPLES OF THE BRICKLAYING MACHINE AND PROJECTPARTNERS;510
20.2.5;3. BRICKLAYING TYPE USED FOR THE BRICKLAYING MACHINE;512
20.2.6;4. CONSTRAINTS AND AIMS OF THE BRICKLAYING MACHINE;513
20.2.7;5. DESCRIPTION OF THE BRICKLAYING MACHINE MODULES;513
20.2.8;6. COMPUTER SUPERVISING SYSTEM OF THE BRICKLAYING MACHINE;519
20.2.9;7. ERGONOMICAL AND SAFETY ASPECTS OF THE BRICKLAYINGMACHINE;519
20.2.10;8. CONCLUSIONS;519
20.3;Chapter 45. Design The Standard of Low Magnetic Field byComputer Simulation;520
20.3.1;Abstract;520
20.3.2;Keywords;520
20.3.3;1. INTRODUCTION;520
20.3.4;2. THEORY;521
20.3.5;3. COMPUTATIONS AND ANALYSIS;522
20.3.6;4. CONCLUSIONS;523
20.3.7;5.REFERENCES;529
20.4;Chapter 46. New method of sampling and positioning for scanning systems load cell-PZTtranslator;530
20.4.1;Abstract;530
20.4.2;1. INTRODUCTION;530
20.4.3;2. PRINCIPLE OF OPERATION;532
20.4.4;3. SYSTEM;535
20.4.5;4. CONCLUSION;536
20.4.6;5 . REFERENCES;537
20.5;CHAPTER 47. COMPUTATION OF THE AXIAL ELECTRIC FIELD FOR THEPROPAGATING MODE ALONG A THIN WIRE IN A CIRCULAR TUNNELUSING AN APPROXIMATE SOLUTION FOR THE DERIVED BESSELFUNCTIONS IN THE CASE OF FINITE SHIELD CONDUCTIVITY ANDPERMEABILITY;538
20.5.1;Abstract;538
20.5.2;Keywords;538
20.5.3;1. INTRODUCTION;538
20.5.4;2. THEORY;539
20.5.5;3. CONCLUSION;543
20.5.6;4. REFERENCES;543
21;AUTHOR INDEX;544




