Buch, Englisch, 430 Seiten, Format (B × H): 235 mm x 190 mm, Gewicht: 1000 g
Best Practices and Fundamental Challenges
Buch, Englisch, 430 Seiten, Format (B × H): 235 mm x 190 mm, Gewicht: 1000 g
ISBN: 978-0-323-91737-7
Verlag: Elsevier - Health Sciences Division
Artificial Intelligence in Earth Science: Best Practices and Fundamental Challenges provides a comprehensive, step-by-step guide to AI workflows for solving problems in Earth Science. The book focuses on the most challenging problems in applying AI in Earth system sciences, such as training data preparation, model selection, hyperparameter tuning, model structure optimization, spatiotemporal generalization, transforming model results into products, and explaining trained models. In addition, it provides full-stack workflow tutorials to help walk readers through the whole process, regardless of previous AI experience.
The book tackles the complexity of Earth system problems in AI engineering, fully guiding geoscientists who are planning to implement AI in their daily work.
Zielgruppe
Researchers and professionals across Earth Science branches including geology, remote sensing, climate science, atmospheric science, agriculture, oceanography, etc.
Autoren/Hrsg.
Weitere Infos & Material
1. Introduction of artificial intelligence in Earth sciences
2. Machine learning for snow cover mapping
3. AI for sea ice forecasting
4. Deep learning for ocean mesoscale eddy detection
5. Artificial intelligence for plant disease recognition
6. Spatiotemporal attention ConvLSTM networks for predicting and physically interpreting wildfire spread
7. AI for physics-inspired hydrology modeling
8. Theory of spatiotemporal deep analogs and their application to solar forecasting
9. AI for improving ozone forecasting
10. AI for monitoring power plant emissions from space
11. AI for shrubland identification and mapping
12. Explainable AI for understanding ML-derived vegetation products
13. Satellite image classification using quantum machine learning
14. Provenance in earth AI
15. AI ethics for earth sciences