Buch, Englisch, 356 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 906 g
ISBN: 978-981-15-8212-7
Verlag: Springer Nature Singapore
Recent Statistical techniques are one of the basal evidence for clinical research, a pivotal in handling new clinical research and in evaluating and applying prior research. This book explores various choices of statistical tools and mechanisms, analyses of the associations among different clinical attributes. It uses advanced statistical methods to describe real clinical data sets, when the clinical processes being examined are still in the process. This book also discusses distinct methods for building predictive and probability distribution models in clinical situations and ways to assess the stability of these models and other quantitative conclusions drawn by realistic experimental data sets. Design of experiments and recent posthoc tests have been used in comparing treatment effects and precision of the experimentation. This book also facilitates clinicians towards understanding statistics and enabling them to follow and evaluate the real empirical studies (formulation of randomized control trial) that pledge insight evidence base for clinical practices. This book will be a useful resource for clinicians, postgraduates scholars in medicines, clinical research beginners and academicians to nurture high-level statistical tools with extensive scope.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1 Design of Clinical Research and its Practical approach……………..............................................................1.1 Introduction……………………………………………………………..1.2 Statistical Historical Perspectives of Clinical trail…………………….. 1.2.1 Global mile stone………………………………………………….1.2.2 Indian mile stone…………………………………………………1.3 Clinical research……………………………………………………1.3.1 Intervention……………………………………………………….1.3.2 Non intervention…………………………………………………1.4 Types of clinical research…………………………………………….1.4.1 Patient oriented research…………………………………………1.4.2 Epidemiological and behavioral studies………………………… 1.4.3 Out come and health related services research………………….. 1.5 Risk in clinical research…………………………………………………1.6 Clinical trial…………………………………………………………….1.6.1 Treatment trial……………………………………………………1.6.2 Prevention trial…………………………………………………..1.6.3 Quality of life trial………………………………………………1.6.4 Diagnostic trial …………………………………………………..1.7 Glossary………………………………………………………………..1.8 Brief concept of study design………………………………………….1.9 Experimental study…………………………………………………….1.9.1 Randomized controlled trail (RCT)………………………………1.9.2 Non Randamized controlled trail (RCT)………………………….1.10 Randomization study………………………………………………….1.10.1 Salient Properties of Randamizatin…………………………….1.11 Non randomization …………………………………………………..1.11.1 Cohort study………………………………………………….1.11.2 Selection of study subjects………………………………………1.11.3 Carrying out research on special populations…………………..1.11.4 Justice………………………………………………………….1.11.5 Obtaining data sets on exposure……………………………….1.11.6 Selection of comparison ………………………………………..1.11.7 Follow up record……………………………………………….1.11.8Compilation and inference………………………………………1.11.9 Strength of cohort study ………………………………………1.11.10 Weakness of Cohort study design……………………………1.12 Cross sectional study…………………………………………………..1.13 Longitudinal study……………………………………………………1.14 Prospective study…………………………………………………….1.15 Retrospective study: case control……………………………………..1.16 Case control study……………………………………………………..1.17 Different phases of clinical trial……………………………………..1.18 Study population……………………………………………………..1.19 Statistical issues and methods………………………………………..1.20 Application of multinomial distribution in clinical trial……………….1.21 Gehans’s Two stage design…………………………………………….1.22 Two stage Simon’s Experimental design……………………………….1.23 Randomized clinical trial…………………………………………….1.23.1 Simple randomization ………………………………………..1.23.2 Block randomization ………………………………………..1.23.4 Minimization method stratification……………………………..1.24 Pragmatic clinical trails (PCTs)……………………………………….1.24.1 Limitation……………………………………………………..1.24.2Statistical implications of pragmatic design……………………1.25 Cluster RCTs design……………………………………………………1.26 Cross over design……………………………………………………….1.26.1 Limitations……………………………………………………….1.27 Delayed start design……………………………………………………1.27.1 Indicators………………………………………………………. 12.27.2 Merits………………………………………………………….1.27.3 Demerits………………………………………………………..1.28 Randamized with drawl design…………………………………………1.28.1 Merits ………………………………………………………….1.28.2 Demerits…………………………………………………………1.29 Adaptive design………………………………………………………1.29.1 Merits ………………………………………………………….1.30 Non experimental methods……………………………………………1.31 New user design……………………………………………………….1.32 Glossary………………………………………………………………..1.32.1 Random variable…………………………………………………1.32.2 Conditional expectation…………………………………………1.32.3 Conditional variance……………………………………………..2 Design of Experiment approach to clinical research……2.1 Introduction…………………………………………………………….2.1.1 Replication……………………………………………………….2.1.2 Randomization…………………………………………………….2.1.3 Control of error…………………………………………………2.2 Design on single factor clinical experiments…………………………..2.3 Complete randomized design ………………………………………2.3.1Randomization…………………………………………………..2.3.2 Analytical method………………………………………………2.3.3 Analysis of variance (ANOVA)……………………………….2.4 Randomized complete block design …………………………………2.4.1 Blocking techniques……………………………………………2.4.2 Randomization and lay out……………………………………2.4.3 Analytical method……………………………………………….2.4.4 Analysis of variance (ANOVA)…………………………………..2.5 Latin square design(LSD)……………………………………………2.5.1 Randomization and lay out………………………………………. 2.5.2 Analytical method………………………………………………..2.6 Cross over design (COD) ……………………………………………2.6.1 Data collection and documentation……………………………..2.6.2 Masking or blinding……………………………………………….2.7 2.7 Ethical issues………………………………………………………2.8 2.8 Sampling techniques……………………………………………3 Statistical Perspective approach to Selection of Sample in Clinical research…………………………………………3.1 Introduction-Statistical Dealing with Success of Good Research …….3.2 Research Perspectives in new Horizon……………………………3.3 Statistical thinking on thematic research area…………………………..3.4 Methods -Formulation and frame work of Research Project…………3.5 Sample size Determination …………………………………………..3.6 Results………………………………………………………………….3.7 Merits of sample size determination……………………………………3.8 Demerits of sample size determination………………………………..3.9 Level of precision……………………………………………………3.10 The Confidence Level………………………………………………..3.11 Using a sample Size of a Similar Study……………………………..3.12 Degree of Variability……………………………………………….3.13 Discussion…………………………………………………………..3.1 Conclusion ……………………………………………………………3.15 Summary ……………………………………………………………… Reference………………………………………………………………4 Statistical Models approach to ARV drugs ………………………..4.1 Introduction…………………………………………………………….4.2 Model description……………………………………………………….4.3 Demographic features of HIV infected women……………………….4.4 Intrauterine and intrapartum transmission ……………………………4.5 Transmission probability at or before birth, in the absence of ARV-Prophylaxis……………………………………………………………4.6 Neural network modelling in HIV/AIDS …………………………….4.7 Application of neural net work in medical science…………………….4.8 4.8 Equation- survival analysis –Model construct…………………….4.9 Model -Proof…………………………………………………………..4.10 Hierarchical neural nets for survival analysis………………………….4.11 Non hierarchical neural nets for Survival analysis…………………….4.12 Salient findings of neural net work model fitting……………………..4.13 Application of the neural net work in HIV or Medical research ……….4.14 Modeling on assessment of quality of life of patients…………………4.15 Model formulation ……………………………………………………4.16 principle component analysis…………………………………………4.17 Model discussion………………………………………………………4.18 Summary…………………………………………………………….5 Statistical methods for clinical research……………………………..5.1 Bio equilance trail………………………………………………………5.2 Equivalence testing, a new gold standard………………………………5.3 Comparing two response rates…………………………………………5.4 Characteristics of normal distribution………………………………….5.5 Log normal distribution………………………………………………..6 Survival analysis……………………………………………………..6.1 Introduction…………………………………………………………….6.2 Model description……………………………………………………6.3 Survival analysis………………………………………………………6.4 Survival function……………………………………………………….6.5 Concept of the model …………………………………………………6.5.1 Survival function……………………………………………….6.5.2 Estimation of s(t)……………………………………………….6.5.3 Probability density function…………………………………….6.6 Hazard Function(Hz)…………………………………………………..6.7 Hazard rate 6.7.1 Survivability of different CD4 category with HAART duration… 6.7.2 Kaplan-Meier survival curve …………………………………6.8 Exponential distribution……………………………………..5.18 Gompertz –Makeham distribution model…………………..6.9 Censoring and life table methods………………………….6.10 Kaplan Meir analysis………………………………………6.11 Estimation with censored data …………………………….6.12 Non informative censoring…………………………………………….6.13 Mantel-Haenszel test………………………………………………….6.14 K-Sample Mantel-Haenszel test………………………………………..7 Image processing modeling on radiographic features…..7.10 Introduction…………………………………………………………………….7.11 Analog image processing…………………………………………………………7.12 Digital image processing ………………………………………………7.13 Application of digital image processing……………………………….7.14 Different stages of digital image processing …………………………7.15 Signal………………………………………………………………….7.16 Relationship……………………………………………………………7.17 How a digital image is formed……………………………………………………..7.18 Overlapping fields-Machine computer vision ………………………..7.19 Computer graphics……………………………………………………..7.20 Artificial intelligence…………………………………………………7.21 Signal processing……………………………………………………7.22 Signals……………………………………………………………7.23 Analog signal…………………………………………………………7.24 Human voice…………………………………………………………….7.25 Digital signal……………………………………………………….7.26 System………………………………………………………………… 7.27 Sampling……………………………………………..7.28 Quantization………………………………………………………….7.29 Application of digital image processing…………………………….7.30 Image sharpening and restoration …………………………………7.31 UV imaging…………………………………………………………………….7.32 Transmission and encoding…………………………………………..7.33 Machine /Robot vision……………………………………………….7.34 Hurdle detection……………………………………………………..7.35 Line follower robot…………………………………………………………..7.36 Color processing ………………………………………………………7.37 Pattern recognition…………………………………………………….7.38 Video processing…………………………………………………….7.39 Modeling on image processing ………………………………………..7.40 Camera pixels…………………………………………………………………7.41 Oversampling……………………………………………………………….7.42 Zooming……………………………………………………………………….7.43 Pixel…………………………………………………………………………7.44 Resolution………………………………………………………………………7.45 Megapixels …………………………………………7.46 Advantage………………………………………………………………7.47 Kernel regression model for image processing…………….7.48 Advanced model of image processing ………………………8 Factors affecting drug response……………………………9 Pharmokinitic modelling (PK)……………………………..10 Genetic variants of drug potency…………………………..11 Application of posthoc test for comparison of potency of drug trail……………………………………………………12 Advanced design of experiment in clinical trail………….13 Data base management of clinical research………………14 Ethical perspective approach to clinical research-experienced at National and global level……………….




