David / Diwekar | BONUS Algorithm for Large Scale Stochastic Nonlinear Programming Problems | Buch | 978-1-4939-2281-9 | sack.de

Buch, Englisch, 146 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 2584 g

Reihe: SpringerBriefs in Optimization

David / Diwekar

BONUS Algorithm for Large Scale Stochastic Nonlinear Programming Problems


2015
ISBN: 978-1-4939-2281-9
Verlag: Springer

Buch, Englisch, 146 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 2584 g

Reihe: SpringerBriefs in Optimization

ISBN: 978-1-4939-2281-9
Verlag: Springer


This book presents the details of the BONUS algorithm and its real world applications in areas like sensor placement in large scale drinking water networks, sensor placement in advanced power systems, water management in power systems, and capacity expansion of energy systems. A generalized method for stochastic nonlinear programming based on a sampling based approach for uncertainty analysis and statistical reweighting to obtain probability information is demonstrated in this book. Stochastic optimization problems are difficult to solve since they involve dealing with optimization and uncertainty loops. There are two fundamental approaches used to solve such problems. The first being the decomposition techniques and the second method identifies problem specific structures and transforms the problem into a deterministic nonlinear programming problem. These techniques have significant limitations on either the objective function type or the underlying distributions for the uncertain variables. Moreover, these methods assume that there are a small number of scenarios to be evaluated for calculation of the probabilistic objective function and constraints. This book begins to tackle these issues by describing a generalized method for stochastic nonlinear programming problems. This title is best suited for practitioners, researchers and students in engineering, operations research, and management science who desire a complete understanding of the BONUS algorithm and its applications to the real world.

David / Diwekar BONUS Algorithm for Large Scale Stochastic Nonlinear Programming Problems jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Introduction.- 2. Uncertainty Analysis and Sampling Techniques.- 3. Probability Density Functions and Kernel Density Estimation.- 4. The BONUS Algorithm.- 5. Water Management under Weather Uncertainty.- 6. Real Time Optimization for Water Management.- 7. Sensor Placement under Uncertainty for Power Plants.- 8. The L-Shaped BONUS Algorithm.- 9. The Environmental Trading Problem.- 10. Water Security Networks.- References.- Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.