De Raedt / Muggleton / Frasconi | Probabilistic Inductive Logic Programming | Buch | 978-3-540-78651-1 | sack.de

Buch, Englisch, Band 4911, 341 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 540 g

Reihe: Lecture Notes in Computer Science

De Raedt / Muggleton / Frasconi

Probabilistic Inductive Logic Programming


2008
ISBN: 978-3-540-78651-1
Verlag: Springer Berlin Heidelberg

Buch, Englisch, Band 4911, 341 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 540 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-540-78651-1
Verlag: Springer Berlin Heidelberg


Inductive LogicProgramming”byDeRaedtandKersting.Inasecondpart,itprovidesa detailedoverviewofthemostimportantprobabilisticlogiclearningformalisms and systems. We are very pleased and proud that the scientists behind the key probabilistic inductive logic programming systems (also those developed outside the APRIL project) have kindly contributed a chapter providing an overviewoftheircontributions.Thisincludes:relationalsequencelearningte- niques (Kersting et al.), using kernels with logical representations (Frasconi andPasserini),MarkovLogic(Domingosetal.), the PRISMsystem (Satoand Kameya),CLP(BN)(SantosCostaetal.),BayesianLogicPrograms(Kersting andDeRaedt),andtheIndependentChoiceLogic(Poole).Thethirdpartthen provides a detailed account of some show-caseapplications of probabilistic - ductive logic programming, more speci?cally: in protein fold discovery (Chen et al.), haplotyping (Landwehr and Mielik¨ ainen) and systems biology (Fages andSoliman). The ?nal parttouchesupon sometheoreticalinvestigationsand VI Preface includes chaptersonbehavioralcomparisonof probabilisticlogicprogramming representations(MuggletonandChen)andamodel-theoreticexpressivityan- ysis(Jaeger).

De Raedt / Muggleton / Frasconi Probabilistic Inductive Logic Programming jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Probabilistic Inductive Logic Programming.- Formalisms and Systems.- Relational Sequence Learning.- Learning with Kernels and Logical Representations.- Markov Logic.- New Advances in Logic-Based Probabilistic Modeling by PRISM.- CLP( ): Constraint Logic Programming for Probabilistic Knowledge.- Basic Principles of Learning Bayesian Logic Programs.- The Independent Choice Logic and Beyond.- Applications.- Protein Fold Discovery Using Stochastic Logic Programs.- Probabilistic Logic Learning from Haplotype Data.- Model Revision from Temporal Logic Properties in Computational Systems Biology.- Theory.- A Behavioral Comparison of Some Probabilistic Logic Models.- Model-Theoretic Expressivity Analysis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.