Buch, Englisch, 302 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 487 g
From Radon Transforms to Machine Learning
Buch, Englisch, 302 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 487 g
Reihe: Applied and Numerical Harmonic Analysis
ISBN: 978-3-030-86666-2
Verlag: Springer International Publishing
Deep connections exist between harmonic and applied analysis and the diverse yet connected topics of machine learning, data analysis, and imaging science. This volume explores these rapidly growing areas and features contributions presented at the second and third editions of the Summer Schools on Applied Harmonic Analysis, held at the University of Genova in 2017 and 2019. Each chapter offers an introduction to essential material and then demonstrates connections to more advanced research, with the aim of providing an accessible entrance for students and researchers. Topics covered include ill-posed problems; concentration inequalities; regularization and large-scale machine learning; unitarization of the radon transform on symmetric spaces; and proximal gradient methods for machine learning and imaging.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Optimierung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik Mathematik Geometrie Differentialgeometrie
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Signalverarbeitung
Weitere Infos & Material
Bartolucci, F., De Mari, F., Monti, M., Unitarization of the Horocyclic Radon Transform on Symmetric Spaces.- Maurer, A., Entropy and Concentration.-Alaifari, R., Ill-Posed Problems: From Linear to Non-Linear and Beyond.- Salzo, S., Villa, S., Proximal Gradient Methods for Machine Learning and Imaging.- De Vito, E., Rosasco, L., Rudi, A., Regularization: From Inverse Problems to Large Scale Machine Learning.