E-Book, Englisch, 308 Seiten
Degueldre The Analysis of Nuclear Materials and Their Environments
1. Auflage 2017
ISBN: 978-3-319-58006-7
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 308 Seiten
ISBN: 978-3-319-58006-7
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book provides an overview of passive and interactive analytical techniques for nuclear materials. The book aims to update readers on new techniques available and provide an introduction for those who are new to the topic or are looking to move into actinides and nuclear materials science. The characterization of actinide species and radioactive materials is vital for understanding how these elements and radioactive isotopes are formed and behave and how these materials can be improved. The analysis of the actinides or radioactive materials goes beyond spent fuel science to the applicable complete fuel cycle and including analysis of reactor materials.
Claude Degueldre is a Professor of Nuclear Engineering at the Department of Engineering of the Lancaster University, UK. His research deals with the analysis of nuclear materials and their environments. He used to teach a course on the behavior of radionuclides in the environment at the Institute for Environmental Science, University of Geneva, Switzerland. He also worked for 30 years in nuclear sciences at the Paul Scherrer Institute, Villigen, Switzerland, focusing on research in the field of the nuclear fuel cycle.
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;5
2;Preface;7
3;Acknowledgements;10
4;Contents;11
5;Abbreviations;14
5.1;Materials;18
5.2;System and Organization;18
5.3;Units;19
5.4;Constants;19
5.5;Parameters;19
6;1 Background: Nuclear Materials and Their Analysis Needs;22
6.1;1.1 Materials;22
6.2;1.2 Nuclear Materials;26
6.2.1;1.2.1 Generation 0 Reactors Materials;27
6.2.2;1.2.2 From Generation I to II Reactor Materials;28
6.2.3;1.2.3 Generation III Reactor Materials;30
6.2.4;1.2.4 Generation IV Reactor Materials;31
6.2.5;1.2.5 Materials from Generation V Reactors and Accelerators;33
6.2.6;1.2.6 Military Nuclear Materials;34
6.2.7;1.2.7 Nuclear Waste Management;37
6.2.8;1.2.8 Contaminated Materials;39
6.3;1.3 Analysis Needs and Limitations;40
6.3.1;1.3.1 Required Analyses and Analysis Requirement;40
6.3.2;1.3.2 Analytical Limitations;41
6.3.3;1.3.3 Analysis Modes and Combinations;43
6.4;References;44
7;2 Sampling, Handling, Treatment and Separation;46
7.1;2.1 Sample Collection and Analysis Mode;46
7.1.1;2.1.1 Sample Selection and Collection;46
7.1.2;2.1.2 Sampling from Analysis Mode;48
7.2;2.2 Sub-sampling;49
7.2.1;2.2.1 Fluid Samples;50
7.2.2;2.2.2 Solid Samples;50
7.3;2.3 Reference Materials and Calibration;53
7.3.1;2.3.1 Reference Materials;53
7.3.2;2.3.2 Calibration with Internal or External Standards;54
7.4;References;54
8;3 Characterization Using Passive or Interactive Techniques;56
8.1;3.1 Material Characterization by Field-Free Passive Techniques;59
8.1.1;3.1.1 Techniques with Phonon Detection;59
8.1.2;3.1.2 Techniques with Photon Detection;60
8.1.2.1;3.1.2.1 X-Ray and ?-Ray Counting and Spectroscopy;60
8.1.2.2;3.1.2.2 From Scanning 1D to Mapping 2D;64
8.1.2.3;3.1.2.3 From Scanning 1D to Tomography 3D;65
8.1.2.4;3.1.2.4 From Static Source to Dynamic Source Counting;66
8.1.3;3.1.3 Techniques with Lepton Detection;68
8.1.3.1;3.1.3.1 Neutrino Counting and Spectroscopy;68
8.1.3.2;3.1.3.2 From Neutrino Counting to Tomography;70
8.1.3.3;3.1.3.3 Measurement of Redox Potential;71
8.1.3.4;3.1.3.4 Electron Counting and Spectroscopy;73
8.1.3.5;3.1.3.5 ??? 2D Autoradiography;76
8.1.3.6;3.1.3.6 Positron Emission Tomography;76
8.1.4;3.1.4 Techniques with Neutron Detection;78
8.1.5;3.1.5 Techniques with Atom or Ion Detection;79
8.1.5.1;3.1.5.1 Ion Sensitive Electrodes;79
8.1.5.2;3.1.5.2 ? Counting and Spectroscopy;80
8.2;3.2 Material Characterization by Field-Free Interactive Techniques;83
8.2.1;3.2.1 Techniques with Phonon Interaction and Phonon Detection;84
8.2.1.1;3.2.1.1 Phononic Acoustic Measure and Spectroscopy;85
8.2.1.2;3.2.1.2 Acoustic Microscopy;86
8.2.1.3;3.2.1.3 Seismic Reflection;88
8.2.2;3.2.2 Techniques with Photon Interaction and Phonon Detection;92
8.2.2.1;3.2.2.1 Laser Induced Photo-Acoustic Spectroscopy;92
8.2.2.2;3.2.2.2 Laser Induced Breakdown Spectroscopy (LIBS);93
8.2.2.3;3.2.2.3 Performance of the Interactive Photon–Phonon Techniques;94
8.2.3;3.2.3 Techniques with Photon Interaction and Photon Detection;95
8.2.3.1;3.2.3.1 Ground Penetrating Radar;95
8.2.3.2;3.2.3.2 Infrared Spectroscopy;97
8.2.3.3;3.2.3.3 Diffuse Reflection Spectroscopy;99
8.2.3.4;3.2.3.4 Near Infrared—Visible—Ultraviolet Spectroscopy and Colorimetry;102
8.2.3.5;3.2.3.5 Single Particle Counting;107
8.2.3.6;3.2.3.6 Photon Correlation Spectroscopy;109
8.2.3.7;3.2.3.7 Raman Spectroscopy;110
8.2.3.8;3.2.3.8 Atomic Absorption Spectroscopy, Optical Emission Spectroscopy and Laser-Induced Breakdown Spectroscopy;113
8.2.3.9;3.2.3.9 Ultraviolet Fluorescence Spectroscopy;115
8.2.3.10;3.2.3.10 X-Ray Absorption and X-Ray Fluorescence Spectroscopy;119
8.2.3.11;3.2.3.11 X-Ray Fluorescence;121
8.2.3.12;3.2.3.12 X-Ray Absorption Fine Structure Spectroscopy;123
8.2.3.13;3.2.3.13 X-Ray Diffraction, Small Angle X-Ray Scattering and Laue Diffraction;131
8.2.3.14;3.2.3.14 X-Ray and ?-Ray Tomography;138
8.2.3.15;3.2.3.15 Analysis Using a Free-Electron Laser;140
8.2.3.16;3.2.3.16 Mössbauer Absorption;141
8.2.3.17;3.2.3.17 Photoactivation;145
8.2.3.18;3.2.3.18 Detection Limit for the Interactive Photon-Photon;146
8.2.4;3.2.4 Techniques with Photon Interaction and Lepton Detection;147
8.2.4.1;3.2.4.1 Ultraviolet and X-Ray Photoelectron Spectroscopy;147
8.2.4.2;3.2.4.2 Surface Extended X-Ray Absorption Fine Structure;148
8.2.5;3.2.5 Techniques with Photon Interaction and Ion or Neutron Detection;148
8.2.5.1;3.2.5.1 Photon-Induced Mass Spectroscopy;148
8.2.5.2;3.2.5.2 Laser Ablation Inductively Coupled Plasma Mass Spectrometry;149
8.2.5.3;3.2.5.3 Resonance Ionization Mass Spectroscopy;151
8.2.5.4;3.2.5.4 Laser microprobe mass analysis (LAMMA);152
8.2.5.5;3.2.5.5 Photoactivation;153
8.2.6;3.2.6 Techniques with Lepton Interaction and Phonon Detection;154
8.2.6.1;3.2.6.1 Techniques with Electron Interaction and Phonons Detection;154
8.2.7;3.2.7 Techniques with Lepton Interaction and Photon Detection;155
8.2.7.1;3.2.7.1 Electron Probe Microanalysis;155
8.2.7.2;3.2.7.2 Positron Annihilation Lifetime Spectroscopy;158
8.2.8;3.2.8 Techniques with Lepton Interaction and Lepton Detection;162
8.2.8.1;3.2.8.1 Scanning Electron Microscopy;162
8.2.8.2;3.2.8.2 Transmission Electron Microscopy and Associated Techniques;163
8.2.8.3;3.2.8.3 Techniques with Muon Interaction and Muon Detection;169
8.2.9;3.2.9 Techniques with Lepton Interaction and Neutron Detection;173
8.2.10;3.2.10 Techniques with Lepton Interaction and Ion Detection;173
8.2.10.1;3.2.10.1 Electro-Spray Ionization Mass Spectroscopy;173
8.2.10.2;3.2.10.2 Spark Source Mass Spectroscopy;174
8.2.11;3.2.11 Techniques with Neutron Interaction and Photon Detection;174
8.2.11.1;3.2.11.1 Instrumental Neutron Activation Analysis;174
8.2.11.2;3.2.11.2 Radiochemical Neutron Activation Analysis;177
8.2.11.3;3.2.11.3 Activation Analysis with Fast Neutrons;177
8.2.12;3.2.12 Techniques with Neutron Interaction and Lepton Detection;178
8.2.13;3.2.13 Techniques with Neutron Interaction and Neutron Detection;181
8.2.13.1;3.2.13.1 Prompt Neutrons Spectroscopy;181
8.2.13.2;3.2.13.2 Delayed Neutrons Spectroscopy;182
8.2.13.3;3.2.13.3 Neutron Diffraction and Scattering;182
8.2.13.4;3.2.13.4 Neutron Radiography and Tomography;184
8.2.14;3.2.14 Techniques with Neutron Interaction and Ion Detection;186
8.2.14.1;3.2.14.1 Thermal Neutron-Induced Fission Track Technique;186
8.2.14.2;3.2.14.2 Fast Neutron-Induced Fission Track;187
8.2.14.3;3.2.14.3 Neutron Elastic Recoil Detection Analysis;189
8.2.15;3.2.15 Techniques with Ion or Atom Interaction and Phonon Detection;189
8.2.15.1;3.2.15.1 Interactive Atom-Phonon techniques;190
8.2.16;3.2.16 Techniques with Ion or Atom Interaction and Photon Detection;190
8.2.16.1;3.2.16.1 Inductively Coupled Plasma Atomic Emission Spectroscopy;191
8.2.16.2;3.2.16.2 Particle-Induced X-Ray Emission;192
8.2.16.3;3.2.16.3 Particle-Induced Gamma-Ray Emission;194
8.2.17;3.2.17 Techniques with Ion Interaction and Neutron Detection;194
8.2.18;3.2.18 Techniques with Ion or Atom Interaction and Ion Detection;195
8.2.18.1;3.2.18.1 Volumetric Analysis;195
8.2.18.2;3.2.18.2 Atom Force Microscopy;199
8.2.18.3;3.2.18.3 Micro- Nano-Indentation (NI);202
8.2.18.4;3.2.18.4 Inductively Coupled Plasma Mass Spectrometry;204
8.2.18.5;3.2.18.5 Secondary Ion Mass Spectrometry;209
8.2.18.6;3.2.18.6 Accelerator Mass Spectrometry;212
8.2.18.7;3.2.18.7 Rutherford Back-Scattering Spectrometry;214
8.2.18.8;3.2.18.8 Elastic Recoil Detection Analysis;215
8.2.18.9;3.2.18.9 Nuclear Reaction Analysis;218
8.3;3.3 Material Characterization by Techniques Under Specific Field;220
8.3.1;3.3.1 Techniques with Field or Phonon Detection;220
8.3.1.1;3.3.1.1 Barkhausen Noise Analysis Under Magnetic Field;220
8.3.2;3.3.2 Techniques with Photon Detection;222
8.3.2.1;3.3.2.1 Mössbauer Emission Spectroscopy Under Magnetic Field;222
8.3.3;3.3.3 Techniques with Atom/Ion Detection;222
8.3.3.1;3.3.3.1 Gravimetry;222
8.3.4;3.3.4 Techniques with Photon Interaction and Photon Detection;224
8.3.4.1;3.3.4.1 Nuclear Magnetic Resonance;224
8.3.4.2;3.3.4.2 Solid-State Nuclear Magnetic Resonance;226
8.3.4.3;3.3.4.3 NMR 3D-Tomography;228
8.3.4.4;3.3.4.4 Electron Paramagnetic Resonance;229
8.3.4.5;3.3.4.5 X-Ray Magnetic Circular Dichroism;231
8.3.4.6;3.3.4.6 Photoelectron Emission Microscopy Spectroscopy;232
8.3.4.7;3.3.4.7 Mössbauer Absorption Spectroscopy;233
8.3.5;3.3.5 Techniques with Photon Interaction and Lepton Detection;234
8.3.6;3.3.6 Techniques with Lepton Interaction and Photon Detection;234
8.3.6.1;3.3.6.1 Muon Spin Spectroscopy;234
8.3.7;3.3.7 Techniques with Lepton Interaction and Lepton Detection;237
8.3.7.1;3.3.7.1 Energy-Loss Magnetic Chiral Dichroism;237
8.3.8;3.3.8 Techniques with Lepton Interaction and Ion Detection;238
8.3.8.1;3.3.8.1 Electrical Conductivity;239
8.3.8.2;3.3.8.2 Coulometry;241
8.3.8.3;3.3.8.3 Voltammetry;243
8.3.8.4;3.3.8.4 Polarography;247
8.3.8.5;3.3.8.5 Atom Probe Tomography;252
8.4;References;255
9;4 Comparing and Combining Analytical Techniques;278
9.1;4.1 Comparing Analytical Techniques;278
9.1.1;4.1.1 Comparing Passive Techniques;279
9.1.2;4.1.2 Comparing Interactive Techniques;280
9.1.2.1;4.1.2.1 Interaction-Detection: Options and Limitations;281
9.1.2.2;4.1.2.2 Elastic Interaction: Diffraction Techniques;281
9.1.2.3;4.1.2.3 Inelastic Interaction: Absorption/Fluorescence Techniques;282
9.1.3;4.1.3 Comparing Passive and Interactive Methods;283
9.1.3.1;4.1.3.1 Comparing Techniques for Characterization;283
9.1.3.2;4.1.3.2 Comparing Techniques for Imaging;286
9.1.3.3;4.1.3.3 Comparing Isotope and Element Analysis;287
9.1.4;4.1.4 Comparing the Detetion Limits and Relevant Issues;288
9.2;4.2 Combining Techniques;290
9.2.1;4.2.1 Combining Passive Techniques;290
9.2.2;4.2.2 Combining Interactive Techniques;291
9.2.2.1;4.2.2.1 Combining Photon-Photon Interactive Techniques;291
9.2.2.2;4.2.2.2 Combining Photon-Photon and Electron-Photon Interactive Techniques;293
9.2.2.3;4.2.2.3 Combining Other Interactive Techniques;294
9.2.3;4.2.3 Combining All Analytical Techniques;295
9.3;References;297
10;5 Concluding Summary;300
11;Index;305




