Dehm / Howe / Zweck | In-situ Electron Microscopy | Buch | 978-3-527-31973-2 | www.sack.de

Buch, Englisch, 384 Seiten, Format (B × H): 176 mm x 246 mm, Gewicht: 907 g

Dehm / Howe / Zweck

In-situ Electron Microscopy

Applications in Physics, Chemistry and Materials Science
1. Auflage 2012
ISBN: 978-3-527-31973-2
Verlag: WILEY-VCH

Applications in Physics, Chemistry and Materials Science

Buch, Englisch, 384 Seiten, Format (B × H): 176 mm x 246 mm, Gewicht: 907 g

ISBN: 978-3-527-31973-2
Verlag: WILEY-VCH


Von den Grundlagen über das Experiment bis zur Anwendung zeigt dieses Buch, wie sich Ionenstrahlanlagen, Rasterelektronenmikroskope und Transmissionselektronenmikroskope zur Beobachtung von Phänomenen bis hinunter zum Nanomaßstab in Echtzeit einsetzen lassen. Nach einem theoretischen Überblick werden experimentelle Verfahren zur Untersuchung von Aufwachsprozessen, Schmelzen, chemischen Reaktionen und Dotierung besprochen; außerdem geht es um die Messung mechanischer, magnetischer, optischer und elektronischer Kenndaten. Der letzte Abschnitt widmet sich Fragen der Soft-Matter-Charakterisierung.

Dehm / Howe / Zweck In-situ Electron Microscopy jetzt bestellen!

Weitere Infos & Material


PREFACE
 
PART I: Basics and Methods
 
INTRODUCTION TO SCANNING ELECTRON MICROSCOPY
Components of the Scanning Electron Microscope
Electron - Matter Interaction
Contrast Mechanisms
Electron Backscattered Diffraction (EBSD)
Dispersive X-Ray Spectroscopy
Other Signals
Summary
 
CONVENTIONAL AND ADVANCED ELECTRON TRANSMISSION MICROSCOPY
Introduction
High-Resolution Transmission Electron Microscopy
Conventional TEM of Defects in Crystals
Lorentz Microscopy
Off-Axis and Inline Electron Holography
Electron Diffraction Techniques
Convergent Beam Electron Diffraction
Scanning Transmission Electron Microscopy and Z-Contrast
Analytical TEM
 
DYNAMIC TRANSMISSION ELECTRON MICROSCOPY
Introduction
How Does Single-Shot DTEM Work?
Experimental Applications of DTEM
Crystallization Under Far-from-Equilibrium Conditions
Space Charge Effects in Single-Shot DTEM
Next-Generation DTEM
Conclusions
 
FORMATION OF SURFACE PATTERNS OBSERVED WITH REFLECTION ELECTRON MICROSCOPY
Introduction
Reflection Electron Microscopy
Silicon Substrate Preparation
Monatomic Steps
Step Bunching
Surface Reconstructions
Epitaxial Growth
Thermal Oxygen Etching
Conclusions
 
PART II Growth and Interactions
 
ELECTRON AND ION IRRADIATION
Introduction
The Physics of Irradiation
Radiation Defects in Solids
The Setup in the Electron Microscope
Experiments
Outlook
 
OBSERVING CHEMICAL REACTIONS USING TRANSMISSION ELECTRON MICROSCOPY
Introduction
Instrumentation
Types of Chemical Reaction Suitable for TEM Observation
Experimental Setup
Available Information Under Reaction Conditions
Limitations and Future Developments
 
IN-SITU TEM STUDIES OF VAPOR- AND LIQUID-PHASE CRYSTAL GROWTH
Introduction
Experimental Considerations
Vapor-Phase Growth Processes
Liquid-Phase Growth Processes
Summary
 
IN-SITU TEM STUDIES OF OXIDATION
Introduction
Experimental Approach
Oxidation Phenomena
Future Developments
Summary
 
PART III: Mechanical Properties
 
MECHANICAL TESTING WITH THE SCANNING ELECTRON MICROSCOPE
Introduction
Technical Requirements and Specimen Preparation
In-Situ Loading of Macroscopic Samples
In-Situ Loading of Micron-Sized Samples
Summary and Outlook
 
IN-SITU TEM STRAINING EXPERIMENTS: RECENT PROGRESS IN STAGES AND SMALL-SCALE MECHANICS
Introduction
Available Straining Techniques
Dislocation Mechanisms in Thermally Strained Metallic Films
Size-Dependent Dislocation Plasticity in Metals
Conclusions and Future Directions
 
IN-SITU NANOINDENTATION IN THE TRANSMISSION ELECTRON MICROSCOPE
Introduction
Experimental Methodology
Example Studies
Conclusions
 
PART IV: Physical Properties
 
CURRENT-INDUCED TRANSPORT: ELECTROMIGRATION
Principles
Transmission Electron Microscopy
Secondary Electron Microscopy
X-Radiography Studies
Specialized Techniques
Comparison of In-Situ Methods
 
CATHODOLUMINESCENCE IN SCANNING AND TRANSMISSION ELECTRON MICROSCOPIES
Introduction
Principles of Cathodoluminsecence
Applications of CL in Scanning and Transmission Electron Microscopies
Concluding Remarks
 
IN-SITU TEM WITH ELECTRICAL BIAS ON FERROELECTRIC OXIDES
Introduction
Experimental Details
Domain Polarization Switching
Grain Boundary Cavitation
Domain Wall Fracture
Antiferroelectric-to-Ferroelectric Phase Transition
Relaxor-to-Ferroelectric Phase Transition
 
LORENTZ MICROSCOPY
Introduction
The In-Situ Creation of Magnetic Fields
Examples
Problems
Conclusions

((short))
Basics
Thermodynamics
Mechanical Properties
Magnetic Properties
Optical Properties
Electronic Properties
Ferroelectric Properties
Soft Matter
 
((long))
I. Basics
Scanning Electron Microscopy (SEM)
Focused Ion Beam Microscopy (FIB)
Transmission Electron Microscopy (including HRTEM and STEM)
Camera Systems for Dynamic TEM Experiments
II. Thermodynamics
Growth Processes
Melting and Pre-melting
Chemical Reactions and Oxidation
Interface Kinetcs
Formation of Silicides from a-Si and metal layers
Formation of Surface Patterns observed by Reflection Electron Microscopy
III. Mechanical Properties
The FIB Platform
Mechanical Tests in the SEM
Strain Mapping by Image Correlation (SEM to HRTEM)
Dislocation Mechanisms
New Developments: In-situ Nanoindentation, AFM, and STM Experiments in the TEM
IV. Magnetic Properties
Lorentz-Microscopy
Dynamic Observations of Domains, Vortices and of Ultrafast Phenomena by TEM and PEEM
V. Optical Properties
Cathodoluminiscence in SEM and TEM
Optical Properties of Nanotubes
VI. Electronic Properties
EBIC (SEM) and Potential Contrast
Electromigration (SEM, TEM)
VII. Ferroelectric Properties
Ferroelectric Domains
VIII. Soft Matter
Experiments using Wet-cells (SEM, ESEM, biological samples and materials)
Structure Determination of Soft Matter using In-situ Techniques


Zweck, Josef
Professor Josef Zweck is head of the electron microscopy group at the University of Regenburg's physics faculty (Germany). He is board member of Germany's society for electron microscopy (DGE) since 1996. he has authored well over 100 scientific publications and is referee for numerous scientific journals.

Dehm, Gerhard
Professor Gerhard Dehm is the department head of Materials Physics at the Montanuniversität Leoben, Austria, and director of the Erich Schmid Institute of Materials Science from the Austrian Academy of Sciences. He has authored over 120 scientific publications and has received scientific awards from the German Society of Materials Science (DGM) and from the award for Nanosciences and Nanotechnology from the State of Styria (Austria).

Howe, James M.
Professor James M. Howe is Director of the Nanoscale Materials Characterization Facility in the Department of Materials Science and Engineering at the University of Virginia (USA). He has received several awards for his research, including a Senior Research Award from the von Humboldt Foundation (Germany), the Materials Science Research Silver Medal from ASM International, and the TMS Champion H. Mathewson Medal from TMS. He has published over 200 technical papers, two book chapters and two symposium proceedings. He is author of the textbook "Interfaces in Materials" and co-author of the textbook "Transmission Electron Microscopy and Diffractometry of Materials".

Professor Gerhard Dehm is the department head of Materials Physics at the Montanuniversität Leoben, Austria, and director of the Erich Schmid Institute of Materials Science from the Austrian Academy of Sciences. He has worked previously at the Max-Planck-Institute for Metals Research in Stuttgart and the Department of Materials Engineering at the Technion in Haifa. Gerhard Dehm has authored about 200 scientific publications and organized several international symposia in the field of in situ characterization. He received several scientific awards including the Masing Award from the German Society of Materials Science (DGM) and the award for Nanosciences and Nanotechnology from the State of Styria (Austria).
 
James M. Howe is the Thomas Goodwin Digges Chaired Professor and Director of the Nanoscale Materials Characterization Facility in the Department of Materials Science and Engineering at the University of Virginia (USA). He has been a visiting professor at the University of Vienna and Osaka University. Dr. Howe has published over 200 technical papers, four book chapters and four symposium proceedings, and is author of the textbook 'Interfaces in Materials' and co-author of the textbook 'Transmission Electron Microscopy and Diffractometry of Materials'. For his research, he has received several awards including a von Humboldt Senior Research Award, the ASM Materials Science Research Silver Medal, and the TMS Champion H. Mathewson Medal.
 
Professor Josef Zweck is head of the electron microscopy group at the University of Regensburg's physics faculty (Germany). An important branch of his work specializes in imaging of intrinsic magnetic and electrostatic fields and their in-situ manipulation by specialized specimen holders. He is board member of Germany's society for electron microscopy (DGE) since 1996 and presides it in the years 2012 and 2013. He has authored well over 100 scientific publications and is referee for numerous scientific journals. He was involved in numerous organizations of the German Physical society's (DPG, Deutsche Physikalische Gesellschaft) annual meetings, as well as national and international congresses on electron microscopy, especially in 1997 when he hosted the 'Dreiländertagung' ('three countries conference', Austria, Switzerland and Germany) in Regensburg. This congress will return to Regensburg in 2013 as a multinational conference with now 10 countries involved.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.