Deppe | Discovery of Ill-Known Motifs in Time Series Data | Buch | 978-3-662-64214-6 | sack.de

Buch, Englisch, Band 15, 205 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 378 g

Reihe: Technologien für die intelligente Automation

Deppe

Discovery of Ill-Known Motifs in Time Series Data


1. Auflage 2022
ISBN: 978-3-662-64214-6
Verlag: Springer

Buch, Englisch, Band 15, 205 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 378 g

Reihe: Technologien für die intelligente Automation

ISBN: 978-3-662-64214-6
Verlag: Springer


This book includes a novel motif discovery for time series, KITE (), to identify ill-known motifs transformed by affine mappings such as translation, uniform scaling, reflection, stretch, and squeeze mappings. Additionally, such motifs may be covered with noise or have variable lengths. Besides KITE’s contribution to motif discovery, new avenues for the signal and image processing domains are explored and created.  The core of KITE is an invariant representation method called (ACQTWP). This wavelet transform applies to motif discovery as well as to several signal and image processing tasks. The efficiency of KITE is demonstrated with data sets from various domains and compared with state-of-the-art algorithms, where KITE yields the best outcomes.

Deppe Discovery of Ill-Known Motifs in Time Series Data jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- Preliminaries.- General Principles of Time Series Motif Discovery.- State of the Art in Time Series Motif Discovery.- Distortion-Invariant Motif Discovery.- Evaluation.- Conclusion and Outlook.- Appendices A-D.


Sahar Deppe studied Electrical Engineering and Information Technology at Halmstad University (Halmstad, Sweden) and the OWL University of Applied Sciences and Arts (Lemgo, Germany), where she received her Master degree. From 2013 to 2020 she was employed at the Institute Industrial IT (inIT) as a research associate and during this time she completed her doctorate (Dr. rer. nat.) in cooperative graduation with Paderborn University. Since 2020 she is employed at the Fraunhofer Institute IOSB-INA as a research associate with project management responsibilities.

In her dissertation, she proposed a novel method to detect motifs in time series data based on mathematical theories suited to represent and handle ill-known motifs such as invariant theory and theories in signal processing such as wavelet theory. Her research interests include but are not limited to the area of motif discovery and time series analysis, pattern recognition, and machine learning. She has published and presented her research at numerous conferences and journals such as IEEE, IARIA, PESARO where she got the best paper award for her research in motif discovery in image data.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.