Derryberry | Basic Data Analysis for Time Series with R | Buch | 978-1-118-42254-0 | sack.de

Buch, Englisch, 320 Seiten, Format (B × H): 159 mm x 241 mm, Gewicht: 660 g

Derryberry

Basic Data Analysis for Time Series with R


1. Auflage 2014
ISBN: 978-1-118-42254-0
Verlag: Wiley

Buch, Englisch, 320 Seiten, Format (B × H): 159 mm x 241 mm, Gewicht: 660 g

ISBN: 978-1-118-42254-0
Verlag: Wiley


Presents modern methods to analyzing data with multiple applications in a variety of scientific fields

Written at a readily accessible level, Basic Data Analysis for Time Series with R emphasizes the mathematical importance of collaborative analysis of data used to collect increments of time or space. Balancing a theoretical and practical approach to analyzing data within the context of serial correlation, the book presents a coherent and systematic regression-based approach to model selection. The book illustrates these principles of model selection and model building through the use of information criteria, cross validation, hypothesis tests, and confidence intervals.

Focusing on frequency- and time-domain and trigonometric regression as the primary themes, the book also includes modern topical coverage on Fourier series and Akaike's Information Criterion (AIC). In addition, Basic Data Analysis for Time Series with R also features:

- Real-world examples to provide readers with practical hands-on experience
- Multiple R software subroutines employed with graphical displays
- Numerous exercise sets intended to support readers understanding of the core concepts
- Specific chapters devoted to the analysis of the Wolf sunspot number data and the Vostok ice core data sets

Derryberry Basic Data Analysis for Time Series with R jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


PREFACE xv

ACKNOWLEDGMENTS xvii

PART I BASIC CORRELATION STRUCTURES

1 RBasics 3

1.1 Getting Started, 3

1.2 Special R Conventions, 5

1.3 Common Structures, 5

1.4 Common Functions, 6

1.5 Time Series Functions, 6

1.6 Importing Data, 7

Exercises, 7

2 Review of Regression and More About R 8

2.1 Goals of this Chapter, 8

2.2 The Simple(ST) Regression Model, 8

2.2.1 Ordinary Least Squares, 8

2.2.2 Properties of OLS Estimates, 9

2.2.3 Matrix Representation of the Problem, 9

2.3 Simulating the Data from a Model and Estimating the Model Parameters in R, 9

2.3.1 Simulating Data, 9

2.3.2 Estimating the Model Parameters in R, 9

2.4 Basic Inference for the Model, 12

2.5 Residuals Analysis—What Can Go Wrong…, 13

2.6 Matrix Manipulation in R, 15

2.6.1 Introduction, 15

2.6.2 OLS the Hard Way, 15

2.6.3 Some Other Matrix Commands, 16

Exercises, 16

3 The Modeling Approach Taken in this Book and Some Examples of Typical Serially Correlated Data 18

3.1 Signal and Noise, 18

3.2 Time Series Data, 19

3.3 Simple Regression in the Framework, 20

3.4 Real Data and Simulated Data, 20

3.5 The Diversity of Time Series Data, 21

3.6 Getting Data Into R, 24

3.6.1 Overview, 24

3.6.2 The Diskette and the scan() and ts() Functions—New York City Temperatures, 25

3.6.3 The Diskette and the read.table() Function—The Semmelweis Data, 25

3.6.4 Cut and Paste Data to a Text Editor, 26

Exercises, 26

4 Some Comments on Assumptions 28

4.1 Introduction, 28

4.2 The Normality Assumption, 29

4.2.1 Right Skew, 30

4.2.2 Left Skew, 30

4.2.3 Heavy Tails, 30

4.3 Equal Variance, 31

4.3.1 Two-Sample t-Test, 31

4.3.2 Regression, 31

4.4 Independence, 31

4.5 Power of Logarithmic Transformations Illustrated, 32

4.6 Summary, 34

Exercises, 34

5 The Autocorrelation Function And AR(1), AR(2) Models 35

5.1 Standard Models—What are the Alternatives to White Noise?, 35

5.2 Autocovariance and Autocorrelation, 36

5.2.1 Stationarity, 36

5.2.2 A Note About Conditions, 36

5.2.3 Properties of Autocovariance, 36

5.2.4 White Noise, 37

5.2.5 Estimation of the Autocovariance and Autocorrelation, 37

5.3 The acf() Function in R, 37

5.3.1 Background, 37

5.3.2 The Basic Code for Estimating the Autocovariance, 38

5.4 The First Alternative to White Noise: Autoregressive Errors—AR(1), AR(2), 40

5.4.1 Definition of the AR(1) and AR(2) Models, 40

5.4.2 Some Preliminary Facts, 40

5.4.3 The AR(1) Model Autocorrelation and Autocovariance, 41

5.4.4 Using Correlation and Scatterplots to Illustrate the AR(1) Model, 41

5.4.5 The AR(2) Model Autocorrelation and Autocovariance, 41

5.4.6 Simulating Data for AR(m) Models, 42

5.4.7 Examples of Stable and Unstable AR(1) Models, 44

5.4.8 Examples of Stable and Unstable AR(2) Models, 46

Exercises, 49

6 The Moving Average Models MA(1) And MA(2) 51

6.1 The Moving Average Model, 51

6.2 The Autocorrelation for MA(1) Models, 51

6.3 A Duality Between MA(l) And AR(m) Models, 52

6.4 The Autocorrelation for MA(2) Models, 52

6.5 Simulated Examples of the MA(1) Model, 52

6.6 Simulated Examples of the MA(2) Model, 54

6.7 AR(m) and MA(l) model acf() Plots, 54

Exercises, 57

PART II ANALYSIS OF PERIODIC DATA AND MODEL SELECTION

7 Review of Transcendental Functions and Complex Numbers 61

7.1 Background, 61

7.2 Complex Arithmetic, 62

7.2.1 The Number i, 62

7.2.2 Complex Conjugates, 62

7.2.3 The Magnitude of a Complex Number, 62

7.3 Some Important Series, 63

7.3.1 The Geometric and Some Transcendental Series, 63

7.3.2 A Rationale for Euler’s Formula, 63

7.4 Useful Facts About Periodic Transcendental Functions, 64

Exercises, 64

8 The Power Spectrum and the Periodogram 65

8.1 Introduction, 65

8.2 A Definition and a Simplified Form for p(f ), 66

8.3 Inverting p(f ) to Recover the Ck Values, 66

8.4 The Power Spectrum for Some Familiar Models, 68

8.4.1 White Noise, 68

8.4.2 The Spectrum for AR(1) Models, 68

8.4.3 The Spectrum for AR(2) Models, 70

8.5 The Periodogram, a Closer Look, 72

8.5.1 Why is the Periodogram Useful?, 72

8.5.2 Some Na¨ýve Code for a Periodogram, 72

8.5.3 An Example—The Sunspot Data, 74

8.6 The Function spec.pgram() in R, 75

Exercises, 77

9 Smoothers, The Bias-Variance Tradeoff, and the Smoothed Periodogram 79

9.1 Why is Smoothing Required?, 79

9.2 Smoothing, Bias, and Variance, 79

9.3 Smoothers Used in R, 80

9.3.1 The R Function lowess(), 81

9.3.2 The R Function smooth.spline(), 82

9.3.3 Kernel Smoothers in spec.pgram(), 83

9.4 Smoothing the Periodogram for a Series With a Known and Unknown Period, 85

9.4.1 Period Known, 85

9.4.2 Period Unknown, 86

9.5 Summary, 87

Exercises, 87

10 A Regression Model for Periodic Data 89

10.1 The Model, 89

10.2 An Example: The NYC Temperature Data, 91

10.2.1 Fitting a Periodic Function, 91

10.2.2 An Outlier, 92

10.2.3 Refitting the Model with the Outlier Corrected, 92

10.3 Complications 1: CO2 Data, 93

10.4 Complications 2: Sunspot Numbers, 94

10.5 Complications 3: Accidental Deaths, 96

10.6 Summary, 96

Exercises, 96

11 Model Selection and Cross-Validation 98

11.1 Background, 98

11.2 Hypothesis Tests in Simple Regression, 99

11.3 A More General Setting for Likelihood Ratio Tests, 101

11.4 A Subtlety Different Situation, 104

11.5 Information Criteria, 106

11.6 Cross-validation (Data Splitting): NYC Temperatures, 108

11.6.1 Explained Variation, R2, 108

11.6.2 Data Splitting, 108

11.6.3 Leave-One-Out Cross-Validation, 110

11.6.4 AIC as Leave-One-Out Cross-Validation, 112

11.7 Summary, 112

Exercises, 113

12 Fitting Fourier series 115

12.1 Introduction: More Complex Periodic Models, 115

12.2 More Complex Periodic Behavior: Accidental Deaths, 116

12.2.1 Fourier Series Structure, 116

12.2.2 R Code for Fitting Large Fourier Series, 116

12.2.3 Model Selection with AIC, 117

12.2.4 Model Selection with Likelihood Ratio Tests, 118

12.2.5 Data Splitting, 119

12.2.6 Accidental Deaths—Some Comment on Periodic Data, 120

12.3 The Boise River Flow data, 121

12.3.1 The Data, 121

12.3.2 Model Selection with AIC, 122

12.3.3 Data Splitting, 123

12.3.4 The Residuals, 123

12.4 Where Do We Go from Here?, 124

Exercises, 124

13 Adjusting for AR(1) Correlation in Complex Models 125

13.1 Introduction, 125

13.2 The Two-Sample t-Test—UNCUT and Patch-Cut Forest, 125

13.2.1 The Sleuth Data and the Question of Interest, 125

13.2.2 A Simple Adjustment for t-Tests When the Residuals Are AR(1), 128

13.2.3 A Simulation Example, 129

13.2.4 Analysis of the Sleuth Data, 131

13.3 The Second Sleuth Case—Global Warming, A Simple Regression, 132

13.3.1 The Data and the Question, 132

13.3.2 Filtering to Produce (Quasi-)Independent Observations, 133

13.3.3 Simulated Example—Regression, 134

13.3.4 Analysis of the Regression Case, 135

13.3.5 The Filtering Approach for the Logging Case, 136

13.3.6 A Few Comments on Filtering, 137

13.4 The Semmelweis Intervention, 138

13.4.1 The Data, 138

13.4.2 Why Serial Correlation?, 139

13.4.3 How This Data Differs from the Patch/Uncut Case, 139

13.4.4 Filtered Analysis, 140

13.4.5 Transformations and Inference, 142

13.5 The NYC Temperatures (Adjusted), 142

13.5.1 The Data and Prediction Intervals, 142

13.5.2 The AR(1) Prediction Model, 144

13.5.3 A Simulation to Evaluate These Formulas, 144

13.5.4 Application to NYC Data, 146

13.6 The Boise River Flow Data: Model Selection With Filtering, 147

13.6.1 The Revised Model Selection Problem, 147

13.6.2 Comments on R2 and R2 pred, 147

13.6.3 Model Selection After Filtering with a Matrix, 148

13.7 Implications of AR(1) Adjustments and the “Skip” Method, 151

13.7.1 Adjustments for AR(1) Autocorrelation, 151

13.7.2 Impact of Serial Correlation on p-Values, 152

13.7.3 The “skip” Method, 152

13.8 Summary, 152

Exercises, 153

PART III COMPLEX TEMPORAL STRUCTURES

14 The Backshift Operator, the Impulse Response Function, and General ARMA Models 159

14.1 The General ARMA Model, 159

14.1.1 The Mathematical Formulation, 159

14.1.2 The arima.sim() Function in R Revisited, 159

14.1.3 Examples of ARMA(m,l) Models, 160

14.2 The Backshift (Shift, Lag) Operator, 161

14.2.1 Definition of B, 161

14.2.2 The Stationary Conditions for a General AR(m) Model, 161

14.2.3 ARMA(m,l) Models and the Backshift Operator, 162

14.2.4 More Examples of ARMA(m,l) Models, 162

14.3 The Impulse Response Operator—Intuition, 164

14.4 Impulse Response Operator, g(B)—Computation, 165

14.4.1 Definition of g(B), 165

14.4.2 Computing the Coefficients, gj., 165

14.4.3 Plotting an Impulse Response Function, 166

14.5 Interpretation and Utility of the Impulse Response Function, 167

Exercises, 167

15 The Yule–Walker Equations and the Partial Autocorrelation Function 169

15.1 Background, 169

15.2 Autocovariance of an ARMA(m,l) Model, 169

15.2.1 A Preliminary Result, 169


DeWayne R. Derryberry, PhD, is Associate Professor in the Department of Mathematics and Statistics at Idaho State University. Dr. Derryberry has published more than a dozen journal articles and his research interests include meta-analysis, discriminant analysis with messy data, time series analysis of the relationship between several cancers, and geographically-weighted regression.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.