Buch, Englisch, 326 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 658 g
Reihe: Chapman & Hall/CRC Monographs and Research Notes in Mathematics
A Matrix Free Large-Scale Nonlinear System Solver in Applied Science with an Introduction to D-Mapping
Buch, Englisch, 326 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 658 g
Reihe: Chapman & Hall/CRC Monographs and Research Notes in Mathematics
ISBN: 978-1-032-35029-5
Verlag: Chapman and Hall/CRC
Perturbed functional iterations (PFI) is a large-scale nonlinear system solver. Nature is abundant with events simulated mathematically by nonlinear systems of equations and inequalities. These we call nonlinear models. Often, they are ill-conditioned, meaning small changes in data causing huge changes in the output. PFI, previously called the perturbed iterative scheme (PIS), is a numerical method to solve nonlinear systems of equations in multidimensional space. Computational results demonstrate that this numerical method has some unique features, which have made it more practical for applications in engineering and applied mathematics. This book will guide readers in the proper use of PFI, both in theoretical and practical settings.
Features:
- Ideal resource for postgraduates and professional researchers in science and engineering working in nonlinear systems
- Algorithmically simple enough for engineers and applied scientists to write their own software based on the contents
Zielgruppe
Academic and Postgraduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
Weitere Infos & Material
1. Introduction: Why PFI? 2. Numerical Solutions of Equations with One Real Variable. 3. Perturbed Jacobi Iterations. (PFI#1). 4. Perturbation of Gauss-Seidel Iterations. PFI#2 [1]. 5. A More Practical Algorithm of DPFI ( PFI# 3). 6. Initial-Value Problems. 7. Stiff Equations. 8. Boundary Value Problem. 9. Applications to Boundary Layer Flow Models. 10. Numerical Solution of Nonlinear Partial Differential Equations by PFI.