Diener | Nonstandard Analysis in Practice | Buch | 978-3-540-60297-2 | sack.de

Buch, Englisch, 250 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 411 g

Reihe: Universitext

Diener

Nonstandard Analysis in Practice


Softcover Nachdruck of the original 1. Auflage 1995
ISBN: 978-3-540-60297-2
Verlag: Springer Berlin Heidelberg

Buch, Englisch, 250 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 411 g

Reihe: Universitext

ISBN: 978-3-540-60297-2
Verlag: Springer Berlin Heidelberg


This book introduces the graduate mathematician and researcher to the effective use of nonstandard analysis (NSA). It provides a tutorial introduction to this modern theory of infinitesimals, followed by nine examples of applications, including complex analysis, stochastic differential equations, differential geometry, topology, probability, integration, and asymptotics. It ends with remarks on teaching with infinitesimals.

Diener Nonstandard Analysis in Practice jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. Tutorial.- 1.1 A new view of old sets.- 1.2 Using the extended language.- 1.3 Shadows and S-properties.- 1.4 Permanence principles.- 2. Complex analysis.- 2.1 Introduction.- 2.2 Tutorial.- 2.3 Complex iteration.- 2.4 Airy’s equation.- 2.5 Answers to exercises.- 3. The Vibrating String.- 3.1 Introduction.- 3.2 Fourier analysis of (DEN).- 3.3 An interesting example.- 3.4 Solutions of limited energy.- 3.5 Conclusion.- 4. Random walks and stochastic differential equations.- 4.1 Introduction.- 4.2 The Wiener walk with infinitesimal steps.- 4.3 Equivalent processes.- 4.4 Diffusions. Stochastic differential equations.- 4.5 Probability law of a diffusion.- 4.6 Ito’s calculus — Girsanov’s theorem.- 4.7 The “density” of a diffusion.- 4.8 Conclusion.- 5. Infinitesimal algebra and geometry.- 5.1 A natural algebraic calculus.- 5.2 A decomposition theorem for a limited point.- 5.3 Infinitesimal riemannian geometry.- 5.4 The theory of moving frames.- 5.5 Infinitesimal linear algebra.- 6. General topology.- 6.1 Halos in topological spaces.- 6.2 What purpose do halos serve ?.- 6.3 The external definition of a topology.- 6.4 The power set of a topological space.- 6.5 Set-valued mappings and limits of sets.- 6.6 Uniform spaces.- 6.7 Answers to the exercises.- 7. Neutrices, external numbers, and external calculus.- 7.1 Introduction.- 7.2 Conventions; an example.- 7.3 Neutrices and external numbers.- 7.4 Basic algebraic properties.- 7.5 Basic analytic properties.- 7.6 Stirling’s formula.- 7.7 Conclusion.- 8. An external probability order theorem with applications.- 8.1 Introduction.- 8.2 External probabilities.- 8.3 External probability order theorems.- 8.4 Weierstrass, Stirling, De Moivre-Laplace.- 9. Integration over finite sets.- 9.1 Introduction.- 9.2 S-integration.-9.3 Convergence in SL1(F).- 9.4 Conclusion.- 10. Ducks and rivers: three existence results.- 10.1 The ducks of the Van der Pol equation.- 10.2 Slow-fast vector fields.- 10.3 Robust ducks.- 10.4 Rivers.- 11. Teaching with infinitesimals.- 11.1 Meaning rediscovered.- 11.2 the evidence of orders of magnitude.- 11.3 Completeness and the shadows concept.- References.- List of contributors.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.