Buch, Englisch, Band 483, 342 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 534 g
Buch, Englisch, Band 483, 342 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 534 g
Reihe: Mathematics and Its Applications
ISBN: 978-90-481-5246-9
Verlag: Springer Netherlands
The development of dynamics theory began with the work of Isaac Newton. In his theory the most basic law of classical mechanics is f = ma, which describes the motion n in IR. of a point of mass m under the action of a force f by giving the acceleration a. If n the position of the point is taken to be a point x E IR., and if the force f is supposed to be a function of x only, Newton's Law is a description in terms of a second-order ordinary differential equation: J2x m dt = f(x). 2 It makes sense to reduce the equations to first order by defining the velo city as an extra n independent variable by v =:i; = ~~ E IR. Then x = v, mv = f(x). L. Euler, J. L. Lagrange and others studied mechanics by means of an analytical method called analytical dynamics. Whenever the force f is represented by a gradient vector field f = - \lU of the potential energy U, and denotes the difference of the kinetic energy and the potential energy by 1 L(x,v) = 2'm(v,v) - U(x), the Newton equation of motion is reduced to the Euler-Lagrange equation ~~ are used as the variables, the Euler-Lagrange equation can be If the momenta y written as. 8L y= 8x' Further, W. R.
Zielgruppe
Research
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Reelle Analysis
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Topologie Mengentheoretische Topologie
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionentheorie, Komplexe Analysis
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik Mathematik Geometrie Nicht-Euklidische Geometrie
Weitere Infos & Material
1 Fatou-Julia type theory.- 2 Ergodic theorems and invariant sets.- 3 Hyperbolicity in differentiable dynamics.- 4 Some topics in dynamics.- 5 Hyperbolicity in complex dynamics.- 6 Iteration theory on ?m.- 7 Complex dynamics in ?m.- A Foundations of differentiable dynamics.- B Foundations of complex dynamics.