E-Book, Englisch, Band 112, 626 Seiten, eBook
Reihe: Notes on Numerical Fluid Mechanics and Multidisciplinary Design
Dillmann / Schröder / Heller New Results in Numerical and Experimental Fluid Mechanics VII
2010
ISBN: 978-3-642-14243-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Contributions to the 16th STAB/DGLR Symposium Aachen, Germany 2008
E-Book, Englisch, Band 112, 626 Seiten, eBook
Reihe: Notes on Numerical Fluid Mechanics and Multidisciplinary Design
ISBN: 978-3-642-14243-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
th This volume contains the papers presented at the 16 DGLR/STAB-Symposium held at the Eurogress Aachen and organized by RWTH Aachen University, Germany, November, 3 - 4, 2008. STAB is the German Aerospace Aerodynamics Association, founded towards the end of the 1970's, whereas DGLR is the German Society for Aeronautics and Astronautics (Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal Oberth e.V.). The mission of STAB is to foster development and acceptance of the discipline “Aerodynamics” in Germany. One of its general guidelines is to concentrate resources and know-how in the involved institutions and to avoid duplication in research work as much as possible. Nowadays, this is more necessary than ever. The experience made in the past makes it easier now, to obtain new knowledge for solving today's and tomorrow's problems. STAB unites German scientists and engineers from universities, research-establishments and industry doing research and project work in numerical and experimental fluid mechanics and aerodynamics for aerospace and other applications. This has always been the basis of numerous common research activities sponsored by different funding agencies. Since 1986 the symposium has taken place at different locations in Germany every two years. In between STAB workshops regularly take place at the DLR in Göttingen.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Title Page;1
2;Foreword;5
3;Table of Contents;7
4;Numerics;7
4.1;Interfacial Area Transport Equation in Statistical-Eulerian-Eulerian Simulations of Multiphase Flow;14
4.1.1;Introduction;14
4.1.1.1;Flow Model;14
4.1.2;Implementation;16
4.1.2.1;Development of an IATE;16
4.1.2.2;Exemplary IATE: Supercritical Injection;17
4.1.3;Conclusion;20
4.1.4;References;21
4.2;Application of the Multi-Scale-Finite-Volume Method to the Simulation of Incompressible Flows with Immersed Boundaries;22
4.2.1;Introduction;22
4.2.2;Discretization of the Navier-Stokes Equations;23
4.2.3;Pressure Computation with the IMSFV-Procedure;24
4.2.4;Numerical Results;27
4.2.4.1;IMSFV for Elliptic Problems with Impermeable Regions;27
4.2.4.2;Navier-Stokes Solver with IMSFV;28
4.2.5;Conclusions;29
4.2.6;References;29
4.3;A Variable-Fidelity Modeling Method for Aero-Loads Prediction;30
4.3.1;Introduction;30
4.3.2;Framework of the Variable-Fidelity Modeling Method;31
4.3.3;Kriging Model and Bridge Function;32
4.3.4;Sample-Point Refinement Strategy;33
4.3.5;Results and Discussion;34
4.3.5.1;VFM for RAE 2822 with One Independent Variable;34
4.3.5.2;VFM for RAE 2822 with Two Independent Variables;36
4.3.6;Conclusions;37
4.3.7;References;38
4.4;Modelling and Validation of Covariance Transport Equations for Large-Eddy-Simulation of Ternary, Turbulent Mixing;39
4.4.1;Introduction;39
4.4.2;Motivation;40
4.4.3;Transport Equations;41
4.4.4;Scalar Dissipation Rate;42
4.4.5;Covariance Transport Equation and Cross-Dissipation Rate;43
4.4.6;Results and Conclusions;43
4.4.7;References;46
4.5;An Efficient One-Shot Algorithm for Aerodynamic Shape Design;47
4.5.1;Introduction;47
4.5.2;One-Shot Algorithm;49
4.5.2.1;Preconditioner B;50
4.5.2.2;Computing Derivatives;51
4.5.2.3;Treatment of Lift Constraint;52
4.5.3;Numerical Results;52
4.5.4;Conclusion;53
4.5.5;References;53
4.6;Application of a New Roughness Extension for k - . Turbulence Models;55
4.6.1;Introduction;55
4.6.2;Roughness Modeling;56
4.6.3;Results;57
4.6.3.1;Flow through a Rough Pipe (Nikuradse [8]);57
4.6.3.2;Flow over a Rough Flat Plate (Ligrani and Moffat [5]);58
4.6.3.3;Flow over a Rough Airfoil (Ljungström [6]);59
4.6.4;Conclusion;61
4.6.5;References;62
4.7;Improved Wall Functions Based on the 1D Boundary Layer Equations for Flows with Significant Pressure Gradient;63
4.7.1;Introduction;63
4.7.2;Study of Dominant Terms in the Boundary Layer Equation;64
4.7.3;Improved Wall-Function Modelling;65
4.7.4;Numerical Method;66
4.7.5;Results;67
4.7.6;Conclusion;70
4.7.7;References;70
4.8;A Wall Model Based on Simplified Thin Boundary Layer Equations for Implicit Large Eddy Simulation of Turbulent Channel Flow;71
4.8.1;Introduction;71
4.8.2;Simplified Thin Boundary Layer Equation;72
4.8.3;Numerical Method;74
4.8.4;Results;74
4.8.4.1;Prediction Capability;75
4.8.4.2;The Effect of LES/TBLE Coupling Positions;76
4.8.4.3;Reynolds Number Dependency of Grid Resolution Requirements;76
4.8.5;Conclusions;78
4.8.6;References;78
4.9;Detached-Eddy Simulation of Supersonic Flow Past Cylindrical Aft Body with and without Base Bleed;79
4.9.1;Introduction;79
4.9.2;Numerical Methodology;80
4.9.3;Details of the Test Case;80
4.9.4;Results;81
4.9.4.1;Aft Body without Bleed;81
4.9.4.2;Aft Body with Bleed, $I$ = 0.0075;83
4.9.5;Conclusions;86
4.9.6;References;86
4.10;Prediction of the Wind Tunnel Sidewall Effect for the iGREENWing-Tailplane Interference Experiment;87
4.10.1;Introduction;87
4.10.2;Grid and Solver;88
4.10.3;Results;89
4.10.3.1;The NLR7301 at Mach 0.70;89
4.10.3.2;The Aerostabil Wing at Mach 0.70;92
4.10.4;Conclusion;93
4.10.5;References;94
4.11;The Influence of the Length Scale Equation on the Simulation Results of Aerodynamic Flows Using Differential Reynolds Stress Models;95
4.11.1;Introduction;95
4.11.2;Model Components;96
4.11.2.1;Reynolds Stress Equation;96
4.11.2.2;Length Scale Equation;97
4.11.3;Results;97
4.11.3.1;RAE 2822 Airfoil;98
4.11.3.2;ONERA M6 Wing;98
4.11.4;Conclusion;101
4.11.5;References;102
4.12;Efficient Flow Computation Including Turbulent Transport;103
4.12.1;Introduction;103
4.12.2;Governing Equations;104
4.12.3;Basic Solution Scheme;104
4.12.4;Implementation of the One-Equation Turbulence Model;106
4.12.5;Computational Results;106
4.12.5.1;Compressible, Turbulent Flow at Moderate Reynolds Numbers;107
4.12.5.2;Compressible, Turbulent Flow at High Reynolds Numbers;109
4.12.5.3;Incompressible, Turbulent Flow;110
4.12.6;Conclusion;110
4.12.7;References;111
4.13;Automatic Transition Prediction for Three-Dimensional Aircraft Configurations Using the DLR $TAU$ Code;112
4.13.1;Introduction;112
4.13.2;Transition Prediction Coupling;113
4.13.3;Computational Results;114
4.13.4;Conclusions;118
4.13.5;References;118
4.14;Numerical Simulation of the Elastic and Trimmed Aircraft;120
4.14.1;Introduction;120
4.14.2;Trim Algorithm;121
4.14.3;FSI Procedure and Coupling between FSI and Trim Algorithm;122
4.14.4;Applications;124
4.14.5;Conclusions;126
4.14.6;References;127
4.15;Chimera Simulations of Transported Large–Scale Vortices and Their Interaction with Airfoils;128
4.15.1;Introduction;128
4.15.2;Numerical Method;129
4.15.3;Results;130
4.15.3.1;Transported Vortices;130
4.15.3.2;NACA 0012 Airfoil;131
4.15.3.3;ONERA-A Airfoil;134
4.15.4;Conclusion;134
4.15.5;References;135
4.16;An Approach to the Gust Problem with Interfering Profiles;136
4.16.1;Introduction;136
4.16.2;Parameters and Steady Solution;137
4.16.3;Unsteady Subsonic and Transonic Solutions;138
4.16.4;Accuracy of the Unsteady Solution;143
4.16.5;Conclusions;143
4.16.6;References;144
4.17;Application of the Immersed Boundary Method for the Simulation of Incompressible Flows in Complex and Moving Geometries;145
4.17.1;Introduction;145
4.17.2;Fundamentals of Implementation;146
4.17.2.1;Surface and Domain Grids;146
4.17.2.2;Domain Identification and Marking Algorithm;146
4.17.2.3;Imposition of Boundary Conditions;147
4.17.2.4;Moving Wall Boundary Condition;148
4.17.2.5;Solving the Equation System;148
4.17.3;Results;148
4.17.3.1;Validation Test Cases;149
4.17.3.2;Oscillating Rectangular Prism;149
4.17.3.3;More Complex Geometries;150
4.17.4;Conclusion and Outlook;151
4.17.5;References;152
4.18;Turbulence Modeling and Detached Eddy Simulation with a High-Order Unstructured Discontinuous Galerkin Code;153
4.18.1;Introduction;153
4.18.2;Discontinuous Galerkin Schemes;154
4.18.2.1;Basic Equations;154
4.18.2.2;Turbulence Modeling;154
4.18.2.3;Turbulence Limiting;155
4.18.2.4;Detached Eddy Simulation;156
4.18.3;Results;156
4.18.3.1;Flat Plate Flow;156
4.18.3.2;Detached Eddy Investigation of the Flow Past a Sphere;157
4.18.4;Conclusion;159
4.18.5;References;160
4.19;An Explicit Space-Time Discontinuous Galerkin Scheme with Local Time-Stepping for Unsteady Flows;161
4.19.1;Introduction;161
4.19.2;The STE-DG Scheme for the Euler Equations;162
4.19.2.1;The Equations and the Semi-discrete Variational Formulation;162
4.19.2.2;The Space-Time Expansion Approach with Local Time-Stepping;163
4.19.3;Sub-Cell Shock Capturing for DG Methods;164
4.19.3.1;Troubled Cell Indicators;164
4.19.3.2;Modified Governing Equation;165
4.19.4;Results;165
4.19.4.1;Fluid Flow around a NACA0012 Airfoil;166
4.19.4.2;Double Mach Reflection of a Strong Shock;166
4.19.5;Conclusion;167
4.19.6;References;168
4.20;Numerical Simulation of Upstream Moving Pressure Waves in Transonic Airfoil Flow;169
4.20.1;Introduction;169
4.20.2;Numerical Method;170
4.20.3;Results;171
4.20.4;Conclusion and Outlook;175
4.20.5;References;175
4.21;Investigation of Resolution Requirements for Wall-Modelled LES of Attached and Massively Separated Flows at High Reynolds Numbers;177
4.21.1;Introduction;177
4.21.2;Basic Discretization and Turbulence Modelling;178
4.21.3;Presentation of Results for High Reynolds Number Flows;180
4.21.3.1;Turbulent Channel Flow at $Ret$ = 4800;181
4.21.3.2;Flow over a Backward-Facing Step at $Reh$=37500;181
4.21.4;Conclusion;183
4.21.5;References;184
5;Flow Control;9
5.1;Active Separation Control on the Flap of a Three-Element High-Lift Configuration with Segmented Actuation in Spanwise Direction;185
5.1.1;Introduction;186
5.1.1.1;Active Flow Control;186
5.1.2;Numerical Simulation Method;187
5.1.2.1;Flow Solver and Turbulence Modeling;187
5.1.2.2;Boundary Conditions;187
5.1.2.3;Time-Step Size;187
5.1.2.4;Method of Excitation;188
5.1.2.5;SCCH High-Lift Configuration;188
5.1.3;Results;189
5.1.3.1;Unexcited Flow;189
5.1.3.2;Excited Flow;189
5.1.4;Conclusion;192
5.1.5;References;192
5.2;Numerical Investigation of Leading Edge Blowing and Optimization of the Slot Geometry for a Circulation Control Airfoil;193
5.2.1;Introduction;193
5.2.2;Coanda Effect and Momentum Coefficient;194
5.2.2.1;$Coanda$ Effect;194
5.2.2.2;Dimensionless Momentum Coefficient;194
5.2.3;Numerical Airfoil Design;195
5.2.4;Leading Edge Blowing;196
5.2.5;Slot Geometry;198
5.2.6;Conclusion;199
5.2.7;References;200
5.3;Comparison of the Capability of Active and Passive Methods of Boundary Layer Control on a Low Pressure Turbine Cascade;201
5.3.1;Introduction;201
5.3.2;Profile Design;202
5.3.2.1;Passive Turbulators;202
5.3.2.2;Suction Surface Blowing;203
5.3.3;Experimental Setup;204
5.3.3.1;High-Speed Cascade Wind Tunnel;204
5.3.3.2;Wake Generator;204
5.3.3.3;Measurement Techniques;204
5.3.4;Results;205
5.3.4.1;Steady Inflow;205
5.3.4.2;Periodically Unsteady Inflow;205
5.3.5;Conclusions;207
5.3.6;References;208
5.4;Active Secondary Flow Control on a Highly Loaded Compressor Cascade by Periodically Pulsating Jets;209
5.4.1;Introduction;209
5.4.2;Experimental Setup;210
5.4.2.1;Cascade Test Rig;210
5.4.2.2;Measurement Techniques;211
5.4.2.3;Sidewall Actuator;212
5.4.3;Results;212
5.4.3.1;Base Flow;212
5.4.3.2;Active Flow Control;213
5.4.4;Conclusions;216
5.4.5;References;217
5.5;Simulation of Active Flow Control on the Flap of a 2D High-Lift Configuration;218
5.5.1;Introduction;218
5.5.2;Geometry and Test Case Definition;219
5.5.3;Computational Strategy;220
5.5.4;Results;221
5.5.5;Conclusions;225
5.5.6;References;225
5.6;Numerical Investigation of a Jet and Vortex Actuator (JaVA);226
5.6.1;Introduction;226
5.6.2;Grid, Boundary Conditions and Numerical Approach;228
5.6.3;Results;229
5.6.3.1;Case 1, Vortex Mode;229
5.6.3.2;Case 2, Free Jet Mode;231
5.6.3.3;Case 3, Wall Jet Mode;232
5.6.4;Conclusions;232
5.6.5;References;233
5.7;Direct Numerical Simulation of Jet Actuators for Boundary Layer Control;234
5.7.1;Introduction;234
5.7.2;Numerical Method;235
5.7.3;Jet Vortex Generator Simulations;236
5.7.3.1;Turbulent Boundary Layer;236
5.7.3.2;Jet Vortex Generator in TBL;238
5.7.4;Conclusions;240
5.7.5;References;240
5.8;Flowfield-Characteristics Generated by DBD Plasma Actuators;242
5.8.1;Introduction;242
5.8.2;Experimental Setup;244
5.8.3;Post Processing;245
5.8.4;Results;246
5.8.5;Conclusions and Outlook;248
5.8.6;References;249
6;Laminar Flow Control and Transition;9
6.1;Identification and Quantification of Shear Layer Influences on the Generation of Vortex Structures;250
6.1.1;Introduction;250
6.1.2;Identification of Coherent Structures;251
6.1.2.1;Vortex Structures;251
6.1.2.2;Shear Layer Structures;252
6.1.3;Identification of Vortex Generation in a Shear Layer;253
6.1.4;Conclusion;257
6.1.5;References;257
6.2;Global Stability Analysis of Compressible Flow around Swept Wings;258
6.2.1;Introduction;258
6.2.1.1;Flow Configuration;259
6.2.1.2;Governing Equations and Numerical Method;260
6.2.2;Global Stability Analysis;260
6.2.2.1;DNS-Based Krylov Technique;262
6.2.3;Results;262
6.2.3.1;Spectrum and Global Modes;263
6.2.3.2;Influence of $Re_s$;264
6.2.4;Conclusions;264
6.2.5;References;265
6.3;Applications of Symmetry Analysis in Stability Theory;266
6.3.1;Introduction;266
6.3.2;Symmetry Analysis;267
6.3.2.1;Symmetries Leading to the Orr-Sommerfeld-Equation;267
6.3.2.2;Additional Symmetries for the Channel Flow;268
6.3.3;The Channel Flow;268
6.3.3.1;Rescaling;268
6.3.3.2;Invariant Solution ;269
6.3.3.3;Interpretation of Invariant Solution ;270
6.3.3.4;Taylor Expansion;271
6.3.3.5;Boundary Conditions ;272
6.3.4;Conclusion;273
6.3.5;References;273
6.4;Investigation on Actuator Arrays for Active Wave Control on a 2D Airfoil;274
6.4.1;Introduction;274
6.4.2;Experimental Setup and Base Flow;275
6.4.3;Slot and Membrane Actuator Arrays;276
6.4.4;Membrane Actuator for Flight Experiments;279
6.4.5;Conclusion;280
6.4.6;References;281
6.5;Experimental Flow Studies on Separation and Reattachment in the Vicinity of Sharp,Wedge Shaped Leading Edges at Low Reynolds Numbers;282
6.5.1;Introduction;282
6.5.2;Experimental Setup;283
6.5.2.1;Wind Tunnel;283
6.5.2.2;Wedge Profile Models;284
6.5.2.3;Measurement and Flow Visualisation Techniques;284
6.5.3;Results and Discussion of the Results;285
6.5.3.1;Formation and Size of the Separation Bubble;285
6.5.3.2;State of the Boundary Layer;287
6.5.3.3;Laminar Reattachment;288
6.5.4;Conclusion;288
6.5.5;References;289
6.6;Receptivity Considerations for Cascaded Actuators Generating Tollmien-Schlichting Waves;290
6.6.1;Introduction;290
6.6.1.1;Objective;290
6.6.1.2;Previous Investigations;291
6.6.2;Method;291
6.6.2.1;Wall-Velocity Actuation;291
6.6.2.2;Receptivity Considerations;291
6.6.2.3;Actuator Design;292
6.6.3;Discussion of Different Design Parameters;294
6.6.3.1;SlotWidth Ratio .;294
6.6.3.2;Phase Parameter .;295
6.6.3.3;Number of Actuators;296
6.6.3.4;Length per Actuator Element;297
6.6.4;Conclusions;297
6.6.5;References;297
6.7;Numerical Investigation of Transition Control by Porous Surfaces in Hypersonic Boundary Layers;298
6.7.1;Introduction;298
6.7.2;Numerical Approach;299
6.7.2.1;Direct Numerical Simulation;299
6.7.2.2;Linear Stability Theory ;299
6.7.3;Grids and Initial Solutions;300
6.7.4;Results;300
6.7.4.1;Validation for a Smooth Wall;300
6.7.4.2;Mack Mode Stabilisation by Porous Surfaces;301
6.7.4.3;Spatial Linear Stability Theory at a Blunt Cone;303
6.7.5;Conclusion;304
6.7.6;References;305
6.8;Investigation of Laser Generated Perturbations for Boundary Layer Stability Experiments;306
6.8.1;Introduction;306
6.8.2;Experimental Setup;307
6.8.3;Results;308
6.8.3.1;Boundary Layer Instabilities at Natural Transition;308
6.8.3.2;Boundary Layer Instabilities with Artificial Disturbances;309
6.8.4;Conclusion;312
6.8.5;References;313
7;Experimental Simulation and Test Techniques;10
7.1;Eulerian and Lagrangian Insights into a Turbulent Boundary Layer Flow Using Time Resolved Tomographic PIV;315
7.1.1;Introduction;315
7.1.2;Test Set-Up and Procedure;316
7.1.3;Results;318
7.1.3.1;Instantaneous 3D-3C(t) Velocity Vector Fields;318
7.1.3.2;Conditional Averaging;319
7.1.3.3;Lagrangian Approach;320
7.1.4;Conclusions and Outlook;321
7.1.5;References;321
7.2;An Automated Test Section for the Experimental Optimization of Multi-element High-Lift Systems;323
7.2.1;Introduction;323
7.2.2;Experimental Set-Up;324
7.2.2.1;Balance;324
7.2.2.2;Eccentric Traverse;325
7.2.2.3;Test Section;327
7.2.3;Results;327
7.2.3.1;Systematic Analysis;327
7.2.3.2;Optimization;328
7.2.4;Conclusion;330
7.2.5;References;330
7.3;Application of Pressure-Sensitive Paint for Determination of Dynamic Surface Pressures on a 30 Hz Oscillating 2D Profile in Transonic Flow;331
7.3.1;Introduction;331
7.3.2;Model and Test Facility;332
7.3.3;Unsteady Pressure-Sensitive Paint;333
7.3.3.1;Development of Unsteady Pressure-Sensitive Paints;333
7.3.3.2;Dynamic Calibration of PSP;333
7.3.4;Data Acquisition;334
7.3.4.1;Phase Locked Unsteady PSP Data Acquisition;334
7.3.4.2;Unsteady PSP Data Acquisition;335
7.3.4.3;Triggering the Data Acquisition System;335
7.3.5;Data Reduction;335
7.3.6;Results for the NLR7301 Model;336
7.3.7;Conclusion;338
7.3.8;References;338
7.4;Simultaneous Measurements of Unsteady Aerodynamic Loads, Flow Velocity Fields, Position and Wing Deformations of MAVs in Plunging Motion;339
7.4.1;Introduction;339
7.4.2;Experimental Environment;340
7.4.3;Optical Measurement Techniques;341
7.4.3.1;MAV Wing Preparation;341
7.4.3.2;Optical Setups at Test Section;341
7.4.3.3;Data Evaluation;342
7.4.4;Results;343
7.4.4.1;Static Measurements;343
7.4.4.2;Effects of Wing Flexibility and Plunging Motion;344
7.4.5;Conclusion;346
7.4.6;References;346
7.5;Development of a Thermo-Optical Sensor for Measurements ofWall Shear Stress Magnitude and Direction;347
7.5.1;Introduction;347
7.5.2;Numerical and Experimental Setup;348
7.5.3;Numerical Results;349
7.5.4;Experimental Results;351
7.5.5;Conclusion;352
7.5.6;References;354
7.6;Flow–Induced Oscillation of a Flat Plate – A Fluid–Structure–Interaction Study Using Experiment and LES;355
7.6.1;Introduction;355
7.6.2;Solution Method;356
7.6.2.1;Experiment;356
7.6.2.2;Simulation;357
7.6.3;Results;358
7.6.4;Conclusions and Outlook;361
7.6.5;References;362
7.7;Investigations to the Response Time of a Glued Thermocouple on the Basis of Experimental and Numerical Analyses;363
7.7.1;Introduction;363
7.7.2;Experimental Investigations;363
7.7.2.1;Dipping-Experiment;364
7.7.2.2;VxG-Experiment;365
7.7.3;Numerical Investigations;366
7.7.3.1;Sensitivity Analysis;366
7.7.3.2;Coupled Simulation of the VxG-Experiment;367
7.7.4;Conclusions;370
7.7.5;References;371
8;Hypersonic Flows and Aerothermodynamics;11
8.1;Shock Tunnel Experiments and CFD Simulation of Lateral Jet Interaction in Hypersonic Flows;372
8.1.1;Introduction;372
8.1.2;Experimental Tools;373
8.1.2.1;Shock Tunnel STA of ISL;373
8.1.2.2;Missile Mock-Up;374
8.1.2.3;Measurement Techniques;374
8.1.3;Experimental Results;375
8.1.4;CFD Simulation;377
8.1.4.1;CFD Code;377
8.1.4.2;Calculated Interaction Amplification Factors;378
8.1.5;Conclusions;379
8.1.6;References;379
8.2;Heat Transfer at the Nose of a High-Speed Missile;380
8.2.1;Introduction;380
8.2.2;Experiments;381
8.2.2.1;Shock Tunnel Facilities;381
8.2.2.2;Heat Flux Measurement;382
8.2.2.3;Experimental Results for M = 6;383
8.2.2.4;Summary of the Experimental Results for M = 3.5 up to M = 10;385
8.2.3;Conclusions;387
8.2.4;References;387
8.3;Analysis of Jet Thruster Control Effectiveness and the Interaction with Aerodynamic Surfaces for a Slender Cylindrical Missile;388
8.3.1;Introduction;388
8.3.2;Geometry;389
8.3.3;Test Campaign;391
8.3.4;Numerical Solution;392
8.3.5;Analysis;393
8.3.6;References;395
8.4;New Explanation of Noise Production by Supersonic Jets with Gas Dredging;396
8.4.1;Introduction;397
8.4.2;w - Mach Waves;398
8.4.3;New Approach to the Jet Boundary Layer Structures;399
8.4.3.1;General Considerations;399
8.4.3.2;The w' -Mach Waves;400
8.4.3.3;The w' ' -Mach Waves;401
8.4.4;Conclusions;402
8.4.5;References;403
8.5;Pattern Recognition in High Speed Schlieren Visualization at the High Enthalpy Shock Tunnel Göttingen (HEG);405
8.5.1;Introduction;405
8.5.1.1;Experimental Conditions;406
8.5.1.2;Measurements in Visualizations;406
8.5.2;Visual Data Manipulator;407
8.5.3;Results and Discussion;408
8.5.3.1;Shock Stand-Off Distance Measurement for Cylinder Model;408
8.5.3.2;Shock Angle Measurement in Scramjet Combustion Chamber;409
8.5.3.3;Model Displacement Tracking for Force Prediction in HEG Flow;411
8.5.4;Conclusions;411
8.5.5;References;412
8.6;Preliminary Design of a Mach 6 Configuration Using MDO;413
8.6.1;Introduction;413
8.6.2;Reference Design Configuration;414
8.6.3;MDO Tool;414
8.6.3.1;Geometry Generation;415
8.6.3.2;FEM Calculation;416
8.6.3.3;Mass Estimation;416
8.6.3.4;CFD Grid Generation;416
8.6.3.5;CFD TAU Calculation;417
8.6.3.6;Force and Trim Calculation;418
8.6.3.7;Objective Function and Constraints Handling;418
8.6.3.8;Optimizer;419
8.6.4;MDO Applications;419
8.6.5;Conclusions;420
8.6.6;References;420
8.7;Numerical Investigation of the Isolator Flow Field of a SCRAMJET Engine with Elevated Wall Temperatures;421
8.7.1;Introduction;421
8.7.2;Numerical Tool;422
8.7.3;Free Stream Conditions;422
8.7.4;Model Geometry and Outer Compression;423
8.7.5;Inflow Profiles at the Isolator Entrance;423
8.7.6;Isolator Flow Field;425
8.7.7;Conclusion;427
8.7.8;References;427
8.8;Numerical Simulation of Nozzle Flow into High Vacuum Using Kinetic and Continuum Approaches;429
8.8.1;Introduction;429
8.8.2;Nozzle Expansion;430
8.8.3;Numerical Methods and Problem Approach;430
8.8.3.1;Determination of Interface Conditions;431
8.8.4;Reference Case;433
8.8.5;Results;433
8.8.5.1;Near Field Results;433
8.8.5.2;Far Field Results;434
8.8.6;Conclusion;435
8.8.7;References;436
8.9;Advanced Flight Analysis of SHEFEX-I;437
8.9.1;Introduction;437
8.9.2;General Comments;438
8.9.3;Numerical Investigations;438
8.9.4;Sensitivity Analysis;440
8.9.5;Numerical Results of the Re-entry;441
8.9.6;Conclusions;444
8.9.7;References;444
8.10;Analysis of the Heat Transfer in Liquid Rocket Engine Cooling Channels;446
8.10.1;Introduction;446
8.10.2;Numerical Methods;447
8.10.2.1;Roughness Modelling;447
8.10.2.2;Dense Gas Properties;448
8.10.2.3;Coupling of Computational Codes;449
8.10.3;Results;449
8.10.3.1;Panel Test Case Results;450
8.10.3.2;Sensitivity Analysis;450
8.10.4;Summary;451
8.10.5;References;452
9;Aeroacoustics;12
9.1;Analysis of High-Lift Generated Noise via a Hybrid LES/CAA Method;454
9.1.1;Introduction;454
9.1.2;Numerical Methods and Computational Setup;455
9.1.2.1;Large-Eddy Simulation;455
9.1.2.2;Acoustic Simulation;455
9.1.3;Results;456
9.1.4;References;460
9.2;Acoustics and Turbulence Related to the Flow over a Flexible Plate Structure behind an Obstacle;462
9.2.1;Introduction;462
9.2.2;Model Setup;463
9.2.3;Experimental Method;464
9.2.4;Numerical Method;464
9.2.5;Results;465
9.2.5.1;Measured Sound Radiation;465
9.2.5.2;Fluid-Structure Interaction;466
9.2.5.3;Simulated Sound Radiation;468
9.2.6;Conclusion;469
9.2.7;References;469
9.3;Large–Eddy Simulation of Three–Dimensional Cavity Flow Using a Time–Conservative Finite–Volume Method;470
9.3.1;Introduction;470
9.3.2;Numerical Methodology;471
9.3.2.1;Subgrid–Scale Modeling for Compressible Turbulent Flows;471
9.3.2.2;Time–Conservative Finite–Volume Method;472
9.3.2.3;Test Case: Rectangular Cavity Flow;474
9.3.3;Results and Discussion;475
9.3.4;Conclusions;476
9.3.5;References;477
9.4;A Hybrid Method for CAA;478
9.4.1;Introduction;478
9.4.2;The Used Codes;478
9.4.2.1;PIANO;478
9.4.2.2;NoisSol;479
9.4.3;Grid Coupling;479
9.4.3.1;Setting of the Ghost Points;479
9.4.3.2;Setting of the Ghost Cells;480
9.4.4;Time Step Coordination;482
9.4.5;Process Management;482
9.4.6;Convergence Test;483
9.4.7;Conclusions;485
9.4.8;References;485
9.5;Aerodynamic and Aeroacoustic Analysis of Contra-Rotating Open Rotor Propulsion Systems at Low-Speed Flight Conditions;486
9.5.1;Introduction;486
9.5.2;Geometry and Test Case Definition;487
9.5.3;Simulation Approach;487
9.5.4;Aerodynamic Analysis;488
9.5.5;Aeroacoustic Analysis;490
9.5.6;Conclusion and Outlook;492
9.5.7;References;493
9.6;Computation of Trailing Edge Noise with a Discontinuous Galerkin Method;494
9.6.1;Introduction;494
9.6.2;Theory;495
9.6.2.1;Particularly Employed Form of APE;495
9.6.2.2;Discretization of APE via DGM;495
9.6.3;Computations;496
9.6.3.1;Test Setup;496
9.6.3.2;Results;497
9.6.4;Conclusions;500
9.6.5;References;500
10;Biomedical Flows;12
10.1;Towards Numerical Simulation and Analysis of the Flow in Central Airways;502
10.1.1;Initial Situation and Objectives;502
10.1.2;Workflow and Configurations;503
10.1.3;Numerical Approach and Parameters;504
10.1.4;Results;505
10.1.5;Conclusion and Outlook;508
10.1.6;References;509
10.2;Protective Artificial Lung Ventilation: Impact of an Endotracheal Tube on the Flow in a Generic Trachea;510
10.2.1;Introduction;510
10.2.2;Experimental and Numerical Setup;511
10.2.2.1;Generic Model of the Trachea and the First Bifurcation;511
10.2.2.2;Numerical Methods: DLR THETA Code;512
10.2.3;Endotracheal Tube and Its Impact on the Flow Field;512
10.2.3.1;Comparison of Experimental and Numerical Results;513
10.2.3.2;Impact of Tube Model Geometry on the Resulting Flow Field;514
10.2.4;Conclusion;516
10.2.5;References;517
10.3;Numerical Simulation of Nasal Cavity Flow Based on a Lattice-Boltzmann Method;518
10.3.1;Introduction;518
10.3.2;Geometry Reconstruction;519
10.3.3;The Lattice-Boltzmann Method;520
10.3.4;Results;521
10.3.5;Conclusions;523
10.3.6;References;524
10.4;Simulation of the Flow in a Human Nose;526
10.4.1;Introduction;526
10.4.2;Numerical Method;527
10.4.3;Results;527
10.4.3.1;Grid Generation and Adaptation;527
10.4.3.2;Unsteady Simulation;528
10.4.3.3;Fluid Mixing;531
10.4.4;Conclusion;532
10.4.5;References;533
11;Airplane Aerodynamics;13
11.1;Aerodynamics of the Wing/Fuselage Junction at an Transport Aircraft in High-Lift Configuration;534
11.1.1;Introduction;534
11.1.2;Numerical Method, Geometry and Meshes;535
11.1.3;Results;535
11.1.4;Conclusion;541
11.1.5;References;541
11.2;Numerical and Experimental Investigation of a Stalling Flow-Through Nacelle;542
11.2.1;Introduction;542
11.2.2;Experimental Setup;543
11.2.2.1;Transition Tripping Method;543
11.2.3;Numerical Method;544
11.2.3.1;The Near-Wall $e^h$-Reynolds Stress Model;544
11.2.3.2;Numerical Setup for the Nacelle Computations;545
11.2.4;Comparison of Experimental and Numerical Results;546
11.2.5;Conclusions;548
11.2.6;References;549
11.3;Minimal Induced Drag for Non-planar Lifting Surfaces with Moderate and Small Aspect Ratio;550
11.3.1;Introduction;550
11.3.2;Background;551
11.3.3;Geometry, Flow Conditions and Used Numerical Methods;553
11.3.4;Results;554
11.3.5;Conclusion;556
11.3.6;References;557
12;Convection and Mixing;13
12.1;Vortex-Generator Pairs for Vortex-Induced Heat-Transfer Enhancement in Heat-Exchanger Channels;559
12.1.1;Introduction;559
12.1.2;Related Work;560
12.1.3;The Generic Vortex-Generator-Pair Configuration;561
12.1.4;The Numerical Simulation Setup;562
12.1.5;Configurations and Dominant Thermal Flow Structures;563
12.1.6;Heat-Transfer Performance Evaluation;564
12.1.7;Conclusion;565
12.1.8;References;566
12.2;Radiation Heat Transfer in Mixed Convection Flows;567
12.2.1;Introduction;567
12.2.2;The Governing Equations and the Numerical Method;568
12.2.3;Surface Heat Radiation;569
12.2.4;Results;570
12.2.5;Conclusions;573
12.2.6;References;573
12.3;Flow Structure Formation of Turbulent Mixed Convection in a Closed Rectangular Cavity;575
12.3.1;Introduction;575
12.3.2;Dimensionless Parameters;576
12.3.3;Experimental Setup;576
12.3.4;Results;578
12.3.4.1;Forced Convection;578
12.3.4.2;Mixed Convection;579
12.3.4.3;Comparison of Flow Structures;580
12.3.5;Conclusion;582
12.3.6;References;582
13;Miscellaneous;13
13.1;Numerical Determination of Nozzle Admittances in Rocket Engines;583
13.1.1;Introduction;583
13.1.2;Numerical Method;584
13.1.3;Boundary Condition for the Nozzle Head;584
13.1.4;Determination of the Decay Coefficient;585
13.1.5;Comparison of Nozzle Admittances;587
13.1.6;Conclusion;589
13.1.7;References;589
13.2;Analysis of Vertical AxisWind Turbines;591
13.2.1;Introduction;591
13.2.2;Aerodynamic Model;592
13.2.3;Computational Model;593
13.2.4;Results;593
13.2.4.1;Two Dimensional Rotor Approximation;594
13.2.4.2;Moving and Oscillating Airfoil;595
13.2.4.3;Three Dimensional Rotor Simulations;597
13.2.5;Conclusions;598
13.2.6;References;598
13.3;Numerical Analysis of the Influence of Tip Clearance Width in a Semi Open Centrifugal Compressor;599
13.3.1;Introduction;599
13.3.2;Tip Clearance Flows;600
13.3.3;Dimensional Analysis in Turbomachines;600
13.3.4;Numerical Model and Problem Setup;601
13.3.5;Results;602
13.3.5.1;Influence of Tip Clearance on Pressure Rise;603
13.3.5.2;Influence of Tip Clearance on Shaft Power;604
13.3.5.3;Flow Inside the Tip Clearance;604
13.3.6;Conclusions;605
13.3.7;References;606
13.4;Aerodynamic Analysis of a Helicopter Fuselage;607
13.4.1;Introduction;607
13.4.2;Numerical Setup;608
13.4.3;Experimental Setup;609
13.4.4;Results;610
13.4.4.1;Grid Study;610
13.4.4.2;Flow Topology;612
13.4.5;Conclusions;613
13.4.6;References;614
13.5;Truck Interference Effects on a Car during an Overtaking Manoeuvre: A Computational Study;615
13.5.1;Introduction;615
13.5.2;Experimental Setup;616
13.5.3;Computational Method;616
13.5.4;Results and Discussion;620
13.5.5;Conclusions;622
13.5.6;References;622
14;Author Index;624




