Doosti | Flexible Nonparametric Curve Estimation | Buch | 978-3-031-66500-4 | www.sack.de

Buch, Englisch, 304 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 635 g

Doosti

Flexible Nonparametric Curve Estimation


2024
ISBN: 978-3-031-66500-4
Verlag: Springer

Buch, Englisch, 304 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 635 g

ISBN: 978-3-031-66500-4
Verlag: Springer


This book delves into the realm of nonparametric estimations, offering insights into essential notions such as probability density, regression, Tsallis Entropy, Residual Tsallis Entropy, and intensity functions.

Through a series of carefully crafted chapters, the theoretical foundations of flexible nonparametric estimators are examined, complemented by comprehensive numerical studies. From theorem elucidation to practical applications, the text provides a deep dive into the intricacies of nonparametric curve estimation.

Tailored for postgraduate students and researchers seeking to expand their understanding of nonparametric statistics, this book will serve as a valuable resource for anyone who wishes to explore the applications of flexible nonparametric techniques.

Doosti Flexible Nonparametric Curve Estimation jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


- Tilted Nonparametric Regression Function Estimation.- Some Asymptotic Properties of Kernel Density Estimation Under Length-Biased and Right-Cencored Data.- Functional Data Analysis: Key Concepts and Applications.- Convolution Process revisited in finite location mixtures and GARFISMA long memory time series.- Non-parametric Estimation of Tsallis Entropy and Residual Tsallis Entropy Under ?-mixing Dependent Data.- Non-parametric intensity estimation for spatial point patterns with R.- A Censored Semicontinuous Regression for Modeling Clustered /Longitudinal Zero-Inflated Rates and Proportions: An Application to Colorectal Cancer.- Singular Spectrum Analysis.- Hellinger-Bhattacharyya cross-validation for shape-preserving multivariate wavelet thresholding.- Bayesian nonparametrics and mixture modelling.- A kernel scale mixture of the skew-normal distribution.- M-estimation of an intensity function and an underlying population size under random right truncation.


Dr. Hassan Doosti is a senior lecturer in Statistics at Macquarie University, where he also holds the position of Program Director for the Master of Data Science program. With a primary focus on nonparametric curve estimation, Dr. Doosti has made significant contributions to the field, with a publication record of over 50 research papers. His expertise encompasses a wide range of topics, including probability density, quantile density, and regression functions tailored for incomplete and biased samples.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.