Douady / Barrau | Artificial Intelligence for Financial Markets | Buch | 978-3-030-97321-6 | sack.de

Buch, Englisch, 172 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 295 g

Reihe: Financial Mathematics and Fintech

Douady / Barrau

Artificial Intelligence for Financial Markets

The Polymodel Approach
1. Auflage 2022
ISBN: 978-3-030-97321-6
Verlag: Springer International Publishing

The Polymodel Approach

Buch, Englisch, 172 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 295 g

Reihe: Financial Mathematics and Fintech

ISBN: 978-3-030-97321-6
Verlag: Springer International Publishing


This book introduces the novel artificial intelligence technique of polymodels and applies it to the prediction of stock returns. The idea of polymodels is to describe a system by its sensitivities to an environment, and to monitor it, imitating what a natural brain does spontaneously. In practice this involves running a collection of non-linear univariate models. This very powerful standalone technique has several advantages over traditional multivariate regressions. With its easy to interpret results, this method provides an ideal preliminary step towards the traditional neural network approach. 
The first two chapters compare the technique with other regression alternatives and introduces an estimation method which regularizes a polynomial regression using cross-validation. The rest of the book applies these ideas to financial markets. Certain equity return components are predicted using polymodels in very different ways, and a genetic algorithm is describedwhich combines these different predictions into a single portfolio, aiming to optimize the portfolio returns net of transaction costs. Addressed to investors at all levels of experience this book will also be of interest to both seasoned and non-seasoned statisticians.
Douady / Barrau Artificial Intelligence for Financial Markets jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


1. Introduction.- 2. Polymodel Theory: An Overview.- 3. Estimation Method: the Linear Non-Linear Mixed Model.- 4. Predictions of Market Returns.- 5. Predictions of Industry Returns.- 6. Predictions of Specific Returns.- 7. Genetic Algorithm-Based Combination of Predictions.- 8. Conclusions.- 9. Appendix.


Thomas Barrau is a Senior Quantitative Researcher working in the hedge fund AXAInvestment Managers Chorus Ltd. He is working on the development of an Equity MarketNeutral portfolio, from the creation of quantitative trading strategies to the portfolioconstruction. Prior to this, he worked at Societe Generale as banker and financial advisorto small businesses, and as CFO in an aerospace company. He holds a PhD in AppliedMathematics from Paris 1 Pantheon-Sorbonne University. Previously, he validated withhonors three different Masters of Science from Aix-Marseille School of Economics,Ca'Foscari University of Venice and Poitiers IAE.

 Raphael Douady is a French mathematician and economist specializing in data science, financial mathematics and chaos theory at the University of Paris I-Panthéon-Sorbonne. He formerly held the Frey Chair of quantitative finance at Stony Brook University and was academic director of the French Laboratory of Excellence on Financial Regulation. He earned his PhD in Hamiltonian dynamics and has more than 25 years of experience in the financial industry. He has particular interest in researching portfolio risks, for which he has developed especially suited powerful nonlinear statistical and data science models, as well as macroeconomics and systemic risk. He founded fin tech firms Riskdata (risk management for the buyside) and Datacore (quantitative portfolio of ETFs) and is Chief Science Officer of NM Fin tech (numerical methods for fixed income trading in China). 



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.