Doyle | Wave Propagation in Structures | E-Book | www.sack.de
E-Book

E-Book, Englisch, 321 Seiten, eBook

Reihe: Mechanical Engineering Series

Doyle Wave Propagation in Structures

Spectral Analysis Using Fast Discrete Fourier Transforms
2. Auflage 1997
ISBN: 978-1-4612-1832-6
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

Spectral Analysis Using Fast Discrete Fourier Transforms

E-Book, Englisch, 321 Seiten, eBook

Reihe: Mechanical Engineering Series

ISBN: 978-1-4612-1832-6
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book introduces spectral analysis as a means of investigating wave propagation and transient oscillations in structures. After developing the foundations of spectral analysis and the fast Fourier transform algorithm, the book provides a thorough treatment of waves in rods, beams, and plates, and introduces a novel matrix method for analysing complex structures as a collection of waveguides. The presentation includes an introduction to higher-order structural theories, the results of many experimental studies, practical applications, and source-code listings for many programs. An extensive bibliography provides an entry to the research literature. Intended as a textbook for graduate students of aerospace or mechanical engineering, the book will also be of interest to practising engineers in these and related disciplines.

Doyle Wave Propagation in Structures jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


1 Spectral Analysis of Wave Motion.- 1.1 Continuous Fourier Transforms.- 1.2 Discrete Fourier Transform.- 1.3 Examples Using the FFT Algorithm.- 1.4 Experimental Aspects of Wave Signals.- 1.5 Spectral Analysis of Wave Motion.- 1.6 Propagating and Reconstructing Waves.- Problems.- 2 Longitudinal Waves in Rods.- 2.1 Elementary Rod Theory.- 2.2 Basic Solution for Waves in Rods.- 2.3 Dissipation in Rods.- 2.4 Coupled Thermoelastic Waves.- 2.5 Reflections and Transmissions.- 2.6 Distributed Loading.- Problems.- 3 Flexural Waves in Beams.- 3.1 Bernoulli-Euler Beam Theory.- 3.2 Basic Solution for Waves in Beams.- 3.3 Bernoulli-Euler Beam with Constraints.- 3.4 Reflection of Flexural Waves.- 3.5 Curved Beams and Rings.- 3.6 Coupled Beam Structure.- Problems.- 4 Higher-Order Waveguides.- 4.1 Waves in Infinite Media.- 4.2 Semi-Infinite Media.- 4.3 Doubly Bounded Media.- 4.4 Doubly Bounded Media: Lamb Waves.- 4.5 Hamilton’s Principle.- 4.6 Modified Beam Theories.- 4.7 Modified Rod Theories.- Problems.- 5 The Spectral Element Method.- 5.1 Structures as Connected Waveguides.- 5.2 Spectral Element for Rods.- 5.3 Spectral Element for Beams.- 5.4 General Frame Structures.- 5.5 Structural Applications.- 5.6 Waveguides with Varying Cross Section.- 5.7 Spectral Super-Elements.- 5.8 Impact Force Identification.- Problems.- 6 Waves in Thin Plates.- 6.1 Plate Theory.- 6.2 Point Impact of a Plate.- 6.3 Wavenumber Transform Solution.- 6.4 Waves Reflected from a Straight Edge.- 6.5 Scattering of Flexural Waves.- 6.6 Lateral Boundary Conditions.- 6.7 Curved Plates and Shells.- Problems.- 7 Structure—Fluid Interaction.- 7.1 Acoustic Wave Motion.- 7.2 Plate—Fluid Interaction.- 7.3 Double Panel Systems.- 7.4 Waveguide Modeling.- 7.5 Radiation from Finite Plates.- 7.6 Cylindrical Cavity.- Problems.- 8 Thin-Walled Structures.- 8.1 Membrane Spectral Elements.- 8.2 Spectral Elements for Flexure.- 8.3 Folded Plate Structures.- 8.4 Structural Applications.- 8.5 Segmented Cylindrical Shells.- 8.6 Future of Spectral Elements.- Problems.- Afterword.- Appendix: Bessel Functions.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.