Buch, Englisch, 528 Seiten, Format (B × H): 161 mm x 237 mm, Gewicht: 829 g
Variational Principles and Differential Geometry
Buch, Englisch, 528 Seiten, Format (B × H): 161 mm x 237 mm, Gewicht: 829 g
ISBN: 978-0-12-415826-9
Verlag: Elsevier Science
An excellent reference for anyone needing to examine properties of harmonic vector fields to help them solve research problems. The book provides the main results of harmonic vector ?elds with an emphasis on Riemannian manifolds using past and existing problems to assist you in analyzing and furnishing your own conclusion for further research. It emphasizes a combination of theoretical development with practical applications for a solid treatment of the subject useful to those new to research using differential geometric methods in extensive detail.
Zielgruppe
Computer & Physical Scientists, Engineers, Applied Mathematicians, Structural Geologists
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Mathematik | Informatik Mathematik Geometrie Differentialgeometrie
Weitere Infos & Material
Chapter 1: Geometry of Tangent BundleChapter 2: Harmonic Vector FieldsChapter 3: Harmonicity and Stability Chapter 4: Harmonicity and Contact Metric StructuresChapter 5: Harmonicity with Respect to G-Natural MetricsChapter 6: The Energy of SectionsChapter 7: Harmonic Vector Fields in CR GeometryChapter 8: Lorentz Geometry and Harmonic Vector FieldsAppendix A: Twisted CohomologiesAppendix B: The Stokes Theorem on Complete ManifoldsAppendix C: Complex Monge-Ampere EquationsAppendix D: Exceptional Orbits of Highest DimensionAppendix E: Reilly's FormulaBibliographyIndex