Buch, Englisch, 281 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 464 g
Buch, Englisch, 281 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 464 g
ISBN: 978-1-4419-4291-3
Verlag: Springer US
As natural phenomena are being probed and mapped in ever-greater detail, scientists in genomics and proteomics are facing an exponentially growing vol ume of increasingly complex-structured data, information, and knowledge. Ex amples include data from microarray gene expression experiments, bead-based and microfluidic technologies, and advanced high-throughput mass spectrom etry. A fundamental challenge for life scientists is to explore, analyze, and interpret this information effectively and efficiently. To address this challenge, traditional statistical methods are being complemented by methods from data mining, machine learning and artificial intelligence, visualization techniques, and emerging technologies such as Web services and grid computing. There exists a broad consensus that sophisticated methods and tools from statistics and data mining are required to address the growing data analysis and interpretation needs in the life sciences. However, there is also a great deal of confusion about the arsenal of available techniques and how these should be used to solve concrete analysis problems. Partly this confusion is due to a lack of mutual understanding caused by the different concepts, languages, methodologies, and practices prevailing within the different disciplines.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Datenanalyse, Datenverarbeitung
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Bioinformatik
- Naturwissenschaften Biowissenschaften Biochemie (nichtmedizinisch)
- Naturwissenschaften Biowissenschaften Tierkunde / Zoologie Tiergenetik, Reproduktion
- Naturwissenschaften Biowissenschaften Biowissenschaften Genetik und Genomik (nichtmedizinisch)
- Naturwissenschaften Biowissenschaften Molekularbiologie
- Naturwissenschaften Biowissenschaften Angewandte Biologie Bioinformatik
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Biotechnologie Industrielle Biotechnologie
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Klinische und Innere Medizin Onkologie, Krebsforschung
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Naturwissenschaften Biowissenschaften Botanik Pflanzenreproduktion, Verbreitung, Genetik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Vorklinische Medizin: Grundlagenfächer Humangenetik
Weitere Infos & Material
to Genomic and Proteomic Data Analysis.- Design Principles for Microarray Investigations.- Pre-Processing DNA Microarray Data.- Pre-Processing Mass Spectrometry Data.- Visualization in Genomics and Proteomics.- Clustering — Class Discovery in the Post-Genomic Era.- Feature Selection and Dimensionality Reduction in Genomics and Proteomics.- Resampling Strategies for Model Assessment and Selection.- Classification of Genomic and Proteomic Data Using Support Vector Machines.- Networks in Cell Biology.- Identifying Important Explanatory Variables for Time-Varying Outcomes.- Text Mining in Genomics and Proteomics.