Buch, Englisch, 458 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 721 g
Reihe: Lecture Notes on Mathematical Modelling in the Life Sciences
Introductory Approaches
Buch, Englisch, 458 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 721 g
Reihe: Lecture Notes on Mathematical Modelling in the Life Sciences
ISBN: 978-3-030-98135-8
Verlag: Springer International Publishing
This book presents the basic theoretical concepts of dynamical systems with applications in population dynamics. Existence, uniqueness and stability of solutions, global attractors, bifurcations, center manifold and normal form theories are discussed with cutting-edge applications, including a Holling's predator-prey model with handling and searching predators and projecting the epidemic forward with varying level of public health interventions for COVID-19.
As an interdisciplinary text, this book aims at bridging the gap between mathematics, biology and medicine by integrating relevant concepts from these subject areas, making it self-sufficient for the reader. It will be a valuable resource to graduate and advance undergraduate students for interdisciplinary research in the area of mathematics and population dynamics.
Zielgruppe
Graduate
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Epidemiologie, Medizinische Statistik
Weitere Infos & Material
Part I Linear Differential and Difference Equations: 1 Introduction to Linear Population Dynamics.- 2 Existence and Uniqueness of Solutions.- 3 Stability and Instability of Linear.- 4 Positivity and Perron-Frobenius's Theorem.- Part II Non-Linear Differential and Difference Equations: 5 Nonlinear Differential Equation.- 6 Omega and Alpha Limit.- 7 Global Attractors and Uniformly.- 8 Linearized Stability Principle and Hartman-Grobman's Theorem.- 9 Positivity and Invariant Sub-region.- 10 Monotone semiflows.- 11 Logistic Equations with Diffusion.- 12 The Poincare-Bendixson and Monotone Cyclic Feedback Systems.- 13 Bifurcations.- 14 Center Manifold Theory and Center Unstable Manifold Theory.- 15 Normal Form Theory.- Part III Applications in Population Dynamics: 16 A Holling's Predator-prey Model with Handling and Searching Predators.- 17 Hopf Bifurcation for a Holling's Predator-prey Model with Handling and Searching Predators.- 18 Epidemic Models with COVID-19.