Buch, Englisch, 414 Seiten, Format (B × H): 150 mm x 229 mm, Gewicht: 680 g
Buch, Englisch, 414 Seiten, Format (B × H): 150 mm x 229 mm, Gewicht: 680 g
ISBN: 978-0-323-95043-5
Verlag: Elsevier Science
Data-driven Analysis and Modeling of Turbulent Flows provides an integrated treatment of modern data-driven methods to describe, control, and predict turbulent flows through the lens of both physics and data science.
The book is organized into three parts:
. Exploration of techniques for discovering coherent structures within turbulent flows, introducing advanced decomposition methods
. Methods for estimation and control using data assimilation and machine learning approaches
. Finally, novel modeling techniques that combine physical insights with machine learning
This book is intended for students, researchers, and practitioners in fluid mechanics, though readers from related fields such as applied mathematics, computational science, and machine learning will find it also of interest.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Strömungslehre
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Naturwissenschaften Physik Mechanik Kontinuumsmechanik, Strömungslehre
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
Weitere Infos & Material
1. Introduction to data-driven modeling
2. Modal Decomposition
3. Resolvent analysis for turbulent flows
4. Data assimilation and flow estimation
5. Data-driven control
6. Constitutive Modeling
7. Parameter estimation and uncertainty quantification
8. Machine Learning Augmented modeling
9. Symbolic regression methods