E-Book, Englisch, Band 15, 345 Seiten, eBook
Dyszlewicz Micropolar Theory of Elasticity
2004
ISBN: 978-3-540-45286-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 15, 345 Seiten, eBook
Reihe: Lecture Notes in Applied and Computational Mechanics
ISBN: 978-3-540-45286-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1. Three-dimensional problems.- 1.1 Displacement-rotation equations of elastodynamics and coupled thermoelasticity.- 1.1.1 Vector equations. Superposition method.- 1.1.2 Fields of body loadings. Fundamental solutions and limiting cases.- 1.1.3 Distortion fields. Fundamental solutions.- 1.1.4 Coupled micropolar thermoelasticity. Fundamental solutions.- 1.1.5 Stress-temperature equations of motion of Ignaczak type. Fundamental solutions.- 1.1.6 Radiation conditions of Sommerfeld type.- 1.1.7 Generalized Galerkin vector. Representation of Iacovache type. Micropolar theory and couple-stress theory.- 1.1.8 Generalized representation of Green-Lamé. The method of Nowacki#x2019;s potentials.- 1.2 Displacement-rotation and stress equations of elastostatics and thermoelastostatics.- 1.2.1 Vector equations and superposition method.- 1.2.2 Fields of body loadings. Fundamental solutions.- 1.2.3 Distortion fields. Fundamental solutions and limiting cases.- 1.2.4 Problem of elastic half-space.- 1.2.5 Galerkin vector. Micropolar theory and couple-stress theory.- 1.2.6 Method of potentials. Micropolar theory and limiting theories. Superposition method.- 1.2.7 Method of potentials. Fundamental solutions. Halfspace problem.- 1.2.8 Micropolar half-space. Problem of singularities of physical fields. Three-dimensional problem.- 1.2.9 Stress equations. Fundamental solutions.- 1.2.10 Generalized representation of Papkovich-Neuber. Micropolar theory and couple-stress theory.- 1.2.11 Applications of the generalized Papkovich-Neuber representation.- 1.2.12 Generalized representation of Papkovich-Neuber. The case of nonhomogenous equations of micropolar elastostatics (E-N model).- 2. Axially-symmetric problems.- 2.1 The first axially-symmetric problem. Elastodynamics.- 2.1.1 Equations in displacements and rotations. Body loadings.- 2.1.2 Equations in displacements and rotations. Superposition method.- 2.1.3 Equations in displacements and rotations with a distortion field.- 2.1.4 Stress functions.- 2.1.5 Method of potentials.- 2.1.6 Stress equations of motion of Ignaczak type.- 2.2 The first axially-symmetric problem. Elastostatics and thermoelastostatics.- 2.2.1 Fields of body loadings. Equations for displacements and rotations. Direct method and superposition method.- 2.2.2 Half-space. The problem of Boussinesq-Mindlin type. Limiting cases.- 2.2.3 Elastic half-space. Problem of singularities of physical fields in elastostatics and thermoelastostatics.- 2.2.4 Displacement-rotation equations with a distortion field.- 2.2.5 The generalized Love function.- 2.2.6 Half-space. Application of the generalized Love functions.- 2.2.7 Method of potentials.- 2.2.8 Half-space. Application of the method of potentials.- 2.2.9 Half-space (E-N) with an inside heat source. Thermoelastostatics.- 2.3 The second axially-symmetric problem. Elastodynamics.- 2.3.1 Equations in displacements and rotations. Body loadings.- 2.3.2 The generalized Lamb problem.- 2.3.3 Stress equations of motion problem (SEMP).- 2.3.4 Fundamental solutions for stresses.- 2.3.5 Equations in displacements and rotations. Superposition method.- 2.3.6 Distortion field. Equations in displacements and rotations. Fundamental solutions and limiting results.- 2.3.7 Functions of displacements-rotations and the method of potentials.- 2.3.8 Potentials of Galerkin type.- 2.4 The second axially-symmetric problem. Elastostatics.- 2.4.1 Body loadings. Equations in displacements and rotations. Direct method and superposition method.- 2.4.2 Equations in displacements and rotations with a distortion field.- 2.4.3 Stress equations of Beltrami-Michell type and stress functions. Half-space problem.- 2.4.4 Functions of displacements-rotations.- 2.4.5 Method of potentials.- 2.4.6 Functions of Love type.- 2.4.7 Problem of singularities of physical fields in the halfspace twisted on the boundary.- 3. Two-dimensional problems.- 3.1 The first problem of plane strain state. Elastodynamics 217 3.1.1 Equations in displacements and rotations with a field of body loadings.- 3.1.2 Equations in displacements and rotations with a distortion field. Fundamental solutions and limiting cases.- 3.1.3 The method of potentials.- 3.1.4 Wave equations in polar coordinates.- 3.1.5 SEMP.- 3.2 The first problem of plane strain state. Elastostatics.- 3.2.1 Equations in displacements-rotations with a field of body loadings.- 3.2.2 Distortion field. Fundamental solutions for displacements and rotations.- 3.2.3 Stress equations of thermoelastostatics and displacement potentials in polar coordinates.- 3.2.4 Concentration of stresses. The problem of cylindrical inclusion. The case of a circular hole.- 3.2.5 Stress concentration problem. Perfectly rigid cylindrical inclusion.- 3.2.6 Method of potentials.- 3.2.7 Half-space problem. Application of the method of potentials.- 3.3 The second problem of plane strain state. Elastodynamics.- 3.3.1 Body loadings. Equations in displacements and rotations.- 3.3.2 Equations in displacements and rotations with a distortion field. Fundamental solutions and limiting cases.- 3.3.3 Functions of displacements and rotations.- 3.3.4 Method of potentials.- 3.3.5 Rotation potentials in polar coordinates.- 3.3.6 SEMP.- 3.4 The second problem of plane strain state. Elastostatics.- 3.4.1 Equations in displacements and rotations with body loadings. Fundamental solutions.- 3.4.2 Equations in displacements and rotations with a distortion field. Fundamental solutions.- 3.4.3 Method of potentials.- 3.4.4 Potentials in polar coordinates.- 3.4.5 Half-space problem.- 3.4.6 The problem of singularities of physical fields in the half-space loaded on the boundary.- 4. Hemitropic medium.- 4.1 Vector equations. Elastodynamics.- 4.1.1 Equations in displacements and rotations with body vectors. The method of direct integration.- 4.1.2 The vector of Galerkin-Cauchy type.- 4.2 Three-dimensional problems. Elastostatics.- 4.2.1 Vector equations in displacements and rotations. Separated equations.- 4.2.2 Generalized vectors of Galerkin type.- 4.2.3 The problem of isotropic hemitropic half-space.- 4.2.4 Potentials of Nowacki in elastostatics and thermoelastostatics.- 4.2.5 Method of potentials. Certain solutions in ?3.- 4.2.6 Hypothetical hemitropic medium.- 4.2.7 Boussinesq#x2019;s problem. Method of potentials. Singularities of physical fields in the half-space.- 4.3 One-dimensional problems of elastostatics and thermoelastostatics.- 4.3.1 The half-space problem.- 4.3.2 The problem of a layer with temperature field.- 4.4 Remarks and conclusions concerning vector equations.- 4.4.1 On the derivation of vector equations.- 4.4.2 Hemitropic medium. Elastodynamics. Analysis of vector equations.- 4.4.3 Displacement-rotation equations describing plane and axially-symmetric problems of micropolar theory.- 4.4.4 Superposition method. Analysis of equations with the vector ?.- References.- Author Index.




