Ehrig / Kühnel / Kiermeier | Universal Theory of Automata | Buch | 978-3-519-02054-7 | sack.de

Buch, Deutsch, 240 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 321 g

Reihe: XTeubner Studienbücher Informatik

Ehrig / Kühnel / Kiermeier

Universal Theory of Automata

A Categorical Approach
1974
ISBN: 978-3-519-02054-7
Verlag: Vieweg+Teubner Verlag

A Categorical Approach

Buch, Deutsch, 240 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 321 g

Reihe: XTeubner Studienbücher Informatik

ISBN: 978-3-519-02054-7
Verlag: Vieweg+Teubner Verlag


Springer Book Archives

Ehrig / Kühnel / Kiermeier Universal Theory of Automata jetzt bestellen!

Zielgruppe


Upper undergraduate

Weitere Infos & Material


1. Unified Representation of Automata.- deterministic, nondeterministic, stochastic, linear, bilinear, and topological automata (1.1–1.7); monoidal categories (1.8–1.10); automata in monoidal categories (1.11–1.14).- 2. Some Problems in Automata Theory.- behavior, reduction, minimization and realization of deterministic automata (2.1–2.6); nondeterministic automata (2.7); transition monoids (2.8); structure theory (2.9).- 3. General Concepts of Reduction, Minimization and Realization.- concept of systematics (3.1); reduced, minimal and realizing systems and subsystematics (3.2–3.3); reduction theorem (3.4); minimal realization theorem (3.6).- 4. Behavior of Automata in Closed Categories: The Deterministic Case.- extended output morphisms and coproducts (4.2); machine morphisms and closed categories (4.3–4.4); characterization of automata (4.5); behavior and image-factorization (4.6–4.7); behavior characterization (4.8); list of examples (4.9).- 5. Reduction and Minimization of Automata in Closed Categories.- systematic of automata in closed categories (5.2); minimal realization theorem (5.3); observable and reduced automata (5.4); reduction and minimization theorem (5.5); monoid automata and transition monoids (5.6–5.7).- 6. Behavior of Automata in Pseudoclosed Categories: The Nondeterministic Case.- automata in pseudoclosed categories — extended output, machine morphism and behavior (6.2–6.4); characterization of machine morphisms and behaviors (6.6–6.7); list of examples (6.8).- 7. Reduction and Minimization of Automata in Pseudoclosed Categories.- construction of reduced and observable automata (7.2–7.4); realization (7.5); systematic of automata in pseudoclosed categories (7.6); reduction theorem (7.7); minimization theorem (7.8); strongminimality (7.9).- 8. Power Automata.- construction of power automata (8.2); power automata theorem (8.3–8.4); kernel automata (8.5).- 9. Initial Automata.- systematic of initial automata (9.2); free realization (9.3); minimal realization theorem (9.5); reachability theorem (9.7); reduction and observability construction (9.8–9.9); observable and finite realization (9.10); initial power automata (9.11).- 10. Scoop Minimization.- scoops and scoop automata theorem (10.2–10.4); scoop construction (10.5–10.7); scoop minimization theorem (10.8).- 11. Structure Theory of Automata.- construction of equalizer, product, coequalizer, coproduct and free automata (11.2–11.7); characterization of iso-, mono- and epimorphisms (11.8); factorization of automata morphisms (11.9).- 12. Appendix: Basic Notions of Category Theory.- categories (12.1); diagrams (12.2); iso-, mono-, epimorphisms (12.3); products, coproducts (12.4); functors (12.5); natural transformations (12.6); adjoint functors (12.7); comma categories (12.8); special limits and colimits (12.9–12.10).- Special Symbols.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.