Analyze Data to Create Visualizations for BI Systems
Buch, Englisch, 374 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 598 g
ISBN: 978-1-4842-4108-0
Verlag: Apress
Shifting focus to data structures, you will learn the various aspects of data structures from a data science perspective. You will then work with file I/O and regular expressions in Python, followed by gathering and cleaning data. Moving on to exploring and analyzing data, you will look at advanced data structures in Python. Then, you will take a deep dive into data visualization techniques, going through a number of plotting systems in Python.
In conclusion, you will complete a detailed case study, where you’ll get a chance to revisit the concepts you’ve covered so far.
What You Will Learn
- Use Python programming techniques for data science
- Master data collections in Python
- Create engaging visualizations for BI systems
- Deploy effective strategies for gathering and cleaning data
- Integrate the Seaborn and Matplotlib plotting systems
Developers with basic Python programming knowledge looking to adopt key strategies for data analysis and visualizations using Python.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Chapter 1: Introduction to data science with python
1.1 What is data science? 1.2 Why Python?1.3 Python learning resources.1.4 Python environment and editors (Jupyter Notebook, Netbeans , etc)1.5 The basics of the python programming1.6 Fundamental python programming techniques 1.6.1 The Tabular data, and data formats1.6.2 Python pandas data science library 1.6.3 Python lambdas, and the numpy library. 1.6.4 Introduce the data cleaning and manipulation techniques1.6.5 Introduce the abstraction of the Series and DataFrame1.6.6 Run basic inferential statistical analysis. 1.7 Exercises and answers
Chapter 2: The importance of data visualization in business intelligence
2.1 Shift from input to output data preference2.2 Why Data visualization is important?2.3 How is the modern business needs Data visualization? 2.4 The future of Data Visualization2.5 How data visualization is used for Business decision making 2.6 Introduce data visualization tchniques 2.6.1 Loading libraries2.6.2 Popular Libraries for Data Visualization in PythonMatplotlibSeabornGeoplotlib PandasPlotly2.6.3 Introduce Plots in Python2.7 Exercises and answers
Chapter 3: Data collections structure
3.1 Lists 3.1.1 Create lists 3.1.2 Accessing values in lists 3.1.3 Add and update lists 3.1.4 Delete list elements 3.1.5 Basic list operations 3.1.6 Indexing, slicing, and matrices 3.1.7 Built-in list functions & methods 3.1.8 List methods 3.1.9 List sorting and traversing 3.1.10 Lists and strings 3.2 Parsing lines 3.3 Aliasing 3.4 Dictionaries3.4.1 Create dictionaries3.4.2 Updating and accessing values in dictionary 3.4.3 Delete dictionary elements 3.4.4 Built-in dictionary functions & methods 3.5 Tuples 3.5.1 Create tuples3.5.2 Updating tuples 3.5.3 Accessing values in tuples 3.5.4 Basic tuples operations 3.6 Series data structure 3.7 DataFrame data structure 3.8 Panel data structure 3.9 Exercises and answers
Chapter 4: File I/O processing & Regular expressions
4.1 File I/O processing 4.1.1 Screen in/out processing 4.1.2 Opening and closing files 4.1.3 The file object attributes 4.1.4 Reading and writing files 4.1.5 Directories in python 4.2 Regular expressions 4.2.1 Regular expression patterns 4.2.2 Special character classes 4.2.3 Repetition cases Alternatives Anchors 4.3 Exercises and answers
Chapter 5: Data gathering and cleaning
5.1 Data cleaning Check missing values Handle the missing values 5.2 Read and clean csv file 5.3 Data integration 5.4 Read the json file 5.5 Reading the html file 5.6 Exercises and answers
Chapter 6: Data exploring and analysis 6.1 Series data structure 6.1.1 Create a series 6.1.2 Accessing data from series with position 6.2 DataFrame data structure 6.2.1 Create a DataFrame 6.2.2 Updating and accessing DataFrame Column selection Column addition Column deletion Row selection Row addition Row deletion 6.3 Panel data structure 6.3.1 Create panel 6.3.2 Accessing data from panel with position 6.4 Data analysis 6.4.1 Statistical analysis 6.4.2 Data grouping Iterating through groups Aggregations Transformations Filtration 6.5 Exercises and answers
Chapter 7: Data visualization 7.1 Direct plotting Line plotting Bar plotting Pie chart Box plotting Histogram plotting A scatterplot 7.2 Seaborn plotting system Strip plotting Boxplot Swarmplot Jointplot 7.3 Matplotlib plotting Line plotting Bar chart Histogram plotting Scatter plot Stack plots Pie chart 7.4 Exercises. Chapter 8: Case Study
8.1 Business case 8.2 Case data gathering8.3 Case data analysis 8.4 Case data Visualization




