Embarak | Data Analysis and Visualization Using Python | Buch | 978-1-4842-4108-0 | www.sack.de

Buch, Englisch, 374 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 598 g

Embarak

Data Analysis and Visualization Using Python

Analyze Data to Create Visualizations for BI Systems
1. Auflage 2018
ISBN: 978-1-4842-4108-0
Verlag: Apress

Analyze Data to Create Visualizations for BI Systems

Buch, Englisch, 374 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 598 g

ISBN: 978-1-4842-4108-0
Verlag: Apress


Look at Python from a data science point of view and learn proven techniques for data visualization as used in making critical business decisions. Starting with an introduction to data science with Python, you will take a closer look at the Python environment and get acquainted with editors such as Jupyter Notebook and Spyder. After going through a primer on Python programming, you will grasp fundamental Python programming techniques used in data science. Moving on to data visualization, you will see how it caters to modern business needs and forms a key factor in decision-making. You will also take a look at some popular data visualization libraries in Python. 
Shifting focus to data structures, you will learn the various aspects of data structures from a data science perspective. You will then work with file I/O and regular expressions in Python, followed by gathering and cleaning data. Moving on to exploring and analyzing data, you will look at advanced data structures in Python. Then, you will take a deep dive into data visualization techniques, going through a number of plotting systems in Python. 
In conclusion, you will complete a detailed case study, where you’ll get a chance to revisit the concepts you’ve covered so far.
What You Will Learn
  • Use Python programming techniques for data science
  • Master data collections in Python 
  • Create engaging visualizations for BI systems
  • Deploy effective strategies for gathering and cleaning data
  • Integrate the Seaborn and Matplotlib plotting systems
Who This Book Is For
Developers with basic Python programming knowledge looking to adopt key strategies for data analysis and visualizations using Python.
Embarak Data Analysis and Visualization Using Python jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


Chapter 1:  Introduction to data science with python     
1.1 What is data science? 1.2 Why Python?1.3 Python learning resources.1.4 Python environment and editors (Jupyter Notebook, Netbeans , etc)1.5 The basics of the python programming1.6 Fundamental python programming techniques 1.6.1 The Tabular data, and data formats1.6.2 Python pandas data science library 1.6.3 Python lambdas, and the numpy library. 1.6.4 Introduce the data cleaning and manipulation techniques1.6.5 Introduce the abstraction of the Series and DataFrame1.6.6 Run basic inferential statistical analysis. 1.7 Exercises and answers
Chapter 2: The importance of data visualization in business intelligence
2.1 Shift from input to output data preference2.2 Why Data visualization is important?2.3 How is the modern business needs Data visualization? 2.4 The future of Data Visualization2.5 How data visualization is used for Business decision making 2.6 Introduce data visualization tchniques 2.6.1 Loading libraries2.6.2 Popular Libraries for Data Visualization in PythonMatplotlibSeabornGeoplotlib PandasPlotly2.6.3 Introduce Plots in Python2.7 Exercises and answers
Chapter 3:  Data collections structure  
3.1 Lists  3.1.1 Create lists  3.1.2 Accessing values in lists  3.1.3 Add and update lists  3.1.4 Delete list elements  3.1.5 Basic list operations  3.1.6 Indexing, slicing, and matrices  3.1.7 Built-in list functions & methods  3.1.8 List methods  3.1.9 List sorting and traversing  3.1.10 Lists and strings  3.2 Parsing lines  3.3 Aliasing  3.4 Dictionaries3.4.1 Create dictionaries3.4.2 Updating and accessing values in dictionary  3.4.3 Delete dictionary elements  3.4.4 Built-in dictionary functions & methods  3.5 Tuples 3.5.1 Create tuples3.5.2 Updating tuples 3.5.3 Accessing values in tuples 3.5.4 Basic tuples operations 3.6 Series data structure  3.7 DataFrame data structure  3.8 Panel data structure  3.9 Exercises and answers
Chapter 4: File I/O processing & Regular expressions  
4.1 File I/O processing  4.1.1 Screen in/out processing  4.1.2 Opening and closing files  4.1.3 The file object attributes  4.1.4 Reading and writing files  4.1.5 Directories in python  4.2 Regular expressions  4.2.1 Regular expression patterns  4.2.2 Special character classes  4.2.3 Repetition cases  Alternatives  Anchors  4.3 Exercises and answers  
Chapter 5: Data gathering and cleaning  
5.1 Data cleaning  Check missing values  Handle the missing values  5.2 Read and clean csv file  5.3 Data integration  5.4 Read the json file  5.5 Reading the html file  5.6 Exercises and answers  
Chapter 6:  Data exploring and analysis  6.1 Series data structure  6.1.1 Create a series  6.1.2 Accessing data from series with position  6.2 DataFrame data structure  6.2.1 Create a DataFrame  6.2.2 Updating and accessing DataFrame  Column selection  Column addition  Column deletion  Row selection  Row addition  Row deletion  6.3 Panel data structure  6.3.1 Create panel  6.3.2 Accessing data from panel with position  6.4 Data analysis  6.4.1 Statistical analysis  6.4.2 Data grouping  Iterating through groups  Aggregations  Transformations  Filtration  6.5 Exercises and answers  
Chapter 7: Data visualization  7.1 Direct plotting  Line plotting  Bar plotting  Pie chart  Box plotting  Histogram plotting  A scatterplot  7.2 Seaborn plotting system  Strip plotting  Boxplot  Swarmplot  Jointplot  7.3 Matplotlib plotting  Line plotting  Bar chart  Histogram plotting  Scatter plot  Stack plots  Pie chart  7.4 Exercises.  Chapter 8: Case Study 
8.1 Business case 8.2 Case data gathering8.3 Case data analysis 8.4 Case data Visualization


Dr. Ossama Embarak holds a Doctorate in Computer Science from the Heriot-Watt University in Scotland, UK. He has more than 2 decades of training and teaching experience with a number of programming languages including C++, Java, C#, R, and Python. He is presently the lead CIS Program Coordinator for Higher Colleges of Technology, UAE’s largest applied higher educational institution, with over 23,000 students attending campuses throughout the region.Recently, he got an interdisciplinary research grant of 199000 AED to implement a machine learning system for mining students’ knowledge and skills.

He has participated in many scholarly activities as a reviewer for journals in the field of computer and information sciences, artificial intelligence, mobile and web technologies. He has published numerous papers in datamining and knowledge discovery, and was also involved as a co-chair for the Technical Program Committee (TPC) for various regional and international conferences.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.