Engel / Quan-Haase / Liu | Handbook of Computational Social Science, Volume 1 | Buch | 978-0-367-45652-8 | sack.de

Buch, Englisch, 416 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 718 g

Reihe: European Association of Methodology Series

Engel / Quan-Haase / Liu

Handbook of Computational Social Science, Volume 1

Theory, Case Studies and Ethics
1. Auflage 2021
ISBN: 978-0-367-45652-8
Verlag: Routledge

Theory, Case Studies and Ethics

Buch, Englisch, 416 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 718 g

Reihe: European Association of Methodology Series

ISBN: 978-0-367-45652-8
Verlag: Routledge


The Handbook of Computational Social Science is a comprehensive reference source for scholars across multiple disciplines. It outlines key debates in the field, showcasing novel statistical modeling and machine learning methods, and draws from specific case studies to demonstrate the opportunities and challenges in CSS approaches.

The Handbook is divided into two volumes written by outstanding, internationally renowned scholars in the field. This first volume focuses on the scope of computational social science, ethics, and case studies. It covers a range of key issues, including open science, formal modeling, and the social and behavioral sciences. This volume explores major debates, introduces digital trace data, reviews the changing survey landscape, and presents novel examples of computational social science research on sensing social interaction, social robots, bots, sentiment, manipulation, and extremism in social media. The volume not only makes major contributions to the consolidation of this growing research field but also encourages growth in new directions.

With its broad coverage of perspectives (theoretical, methodological, computational), international scope, and interdisciplinary approach, this important resource is integral reading for advanced undergraduates, postgraduates, and researchers engaging with computational methods across the social sciences, as well as those within the scientifi c and engineering sectors.

Engel / Quan-Haase / Liu Handbook of Computational Social Science, Volume 1 jetzt bestellen!

Zielgruppe


Postgraduate and Professional

Weitere Infos & Material


Preface

- Introduction to the Handbook of Computational Social Science

Uwe Engel, Anabel Quan-Haase, Sunny Xun Liu and Lars Lyberg

Section I. The Scope and Boundaries of CSS

- The Scope of Computational Social Science

Claudio Cioffi-Revilla

- Analytical Sociology amidst a Computational Social Science Revolution

Benjamin F. Jarvis, Marc Keuschnigg and Peter Hedström

- Computational Cognitive Modeling in the Social Sciences

Holger Schultheis

- Computational Communication Science: Lessons from Working Group Sessions with Experts of an Emerging Research Field

Stephanie Geise and Annie Waldherr

- A Changing Survey Landscape

Lars Lyberg and Steven G. Heeringa

- Digital Trace Data: Modes of Data Collection, Applications, and Errors at a Glance

Florian Keusch and Frauke Kreuter

- Open Computational Social Science

Jan G. Voelkel and Jeremy Freese

- Causal and Predictive Modeling in Computational Social Science

Uwe Engel

- Data-driven Agent-based Modeling in Computational Social Science

Jan Lorenz

Section II. Privacy, Ethics, and Politics in CSS Research

- Ethics and Privacy in Computational Social Science: A Call for Pedagogy

William Hollingshead, Anabel Quan-Haase and Wenhong Chen

- Deliberating with the Public: An Agenda to Include Stakeholder Input on Municipal "Big Data" Projects

James Popham, Jennifer Lavoie, Andrea Corradi and Nicole Coomber

- Analysis of the Principled-AI Framework´s Constraints in Becoming a Methodological Reference for Trustworthy-AI Design

Daniel Varona and Juan Luis Suarez

Section III. Case Studies and Research Examples

- Sensing Close-Range Proximity for Studying Face-to-Face Interaction

Johann Schaible, Marcos Oliveira, Maria Zens and Mathieu Génois

- Social Media Data in Affective Science

Max Pellert, Simon Schweighofer and David Garcia

- Understanding Political Sentiment: Using Twitter to Map the US 2016 Democratic Primaries

Niklas M Loynes and Mark J Elliot

- The Social Influence of Bots and Trolls in Social Media

Yimin Chen

- Social Bots and Social Media Manipulation in 2020: The Year in Review

Ho-Chun Herbert Chang, Emily Chen, Meiqing Zhang, Goran Muric, and Emilio Ferrara

- A Picture is (still) Worth a Thousand Words: The Impact of Appearance and Characteristic Narratives on People’s Perceptions of Social Robots

Sunny Xun Liu, Elizabeth Arredondo, Hannah Miezkowski, Jeff Hancock and Byron Reeves

- Data Quality and Privacy Concerns in Digital Trace Data: Insights from a Delphi Study on Machine Learning and Robots in Human Life

Uwe Engel and Lena Dahlhaus

- Effective Fight Against Extremist Discourse On-Line: The Case of ISIS’s Propaganda

Séraphin Alava and Rasha Nagem

- Public Opinion Formation on the Far Right

Michael Adelmund and Uwe Engel


Uwe Engel is Professor at the University of Bremen, Germany, where he held a chair in sociology from 2000 to 2020. From 2008 to 2013, Dr. Engel coordinated the Priority Programme on “Survey Methodology” of the German Research Foundation. His current research focuses on data science, human-robot interaction, and opinion dynamics.

Anabel Quan-Haase is Professor of Sociology and Information and Media Studies at Western University and Director of the SocioDigital Media Lab, London, Canada. Her research interests include social media, social networks, life course, social capital, computational social science, and digital inequality/inclusion.

Sunny Xun Liu is a research scientist at Stanford Social Media Lab, USA. Her research focuses on the social and psychological e- ects of social media and AI, social media and well-being, and how the design of social robots impacts psychological perceptions.

Lars Lyberg was Head of the Research and Development Department at Statistics Sweden and professor at Stockholm University. He was an elected member of the International Statistical Institute. In 2018, he received the AAPOR Award for Exceptionally Distinguished Achievement.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.