Esnault / Vieweg | Lectures on Vanishing Theorems | E-Book | sack.de
E-Book

E-Book, Englisch, Band 20, 166 Seiten, eBook

Reihe: Oberwolfach Seminars

Esnault / Vieweg Lectures on Vanishing Theorems


1992
ISBN: 978-3-0348-8600-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 20, 166 Seiten, eBook

Reihe: Oberwolfach Seminars

ISBN: 978-3-0348-8600-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Introduction M. Kodaira's vanishing theorem, saying that the inverse of an ample invert ible sheaf on a projective complex manifold X has no cohomology below the dimension of X and its generalization, due to Y. Akizuki and S. Nakano, have been proven originally by methods from differential geometry ([39J and [1]). Even if, due to J.P. Serre's GAGA-theorems [56J and base change for field extensions the algebraic analogue was obtained for projective manifolds over a field k of characteristic p = 0, for a long time no algebraic proof was known and no generalization to p > 0, except for certain lower dimensional manifolds. Worse, counterexamples due to M. Raynaud [52J showed that in characteristic p > 0 some additional assumptions were needed. This was the state of the art until P. Deligne and 1. Illusie [12J proved the degeneration of the Hodge to de Rham spectral sequence for projective manifolds X defined over a field k of characteristic p > 0 and liftable to the second Witt vectors W2(k). Standard degeneration arguments allow to deduce the degeneration of the Hodge to de Rham spectral sequence in characteristic zero, as well, a re sult which again could only be obtained by analytic and differential geometric methods beforehand. As a corollary of their methods M. Raynaud (loc. cit.) gave an easy proof of Kodaira vanishing in all characteristics, provided that X lifts to W2(k).

Esnault / Vieweg Lectures on Vanishing Theorems jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


§ 1 Kodaira’s vanishing theorem, a general discussion.- § 2 Logarithmic de Rham complexes.- § 3 Integral parts of Q-divisors and coverings.- § 4 Vanishing theorems, the formal set-up.- § 5 Vanishing theorems for invertible sheaves.- § 6 Differential forms and higher direct images.- § 7 Some applications of vanishing theorems.- § 8 Characteristic p methods: Lifting of schemes.- § 9 The Frobenius and its liftings.- § 10 The proof of Deligne and Illusie [12].- § 11 Vanishing theorems in characteristic p.- § 12 Deformation theory for cohomology groups.- § 13 Generic vanishing theorems [26], [14].- Appendix: Hypercohomology and spectral sequences.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.