Faber / Farkas / van der Geer K3 Surfaces and Their Moduli
1. Auflage 2016
ISBN: 978-3-319-29959-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 315, 403 Seiten, eBook
Reihe: Progress in Mathematics
ISBN: 978-3-319-29959-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Introduction.- Samuel Boissière, Andrea Cattaneo, Marc Nieper-Wisskirchen, and Alessandra Sarti : The automorphism group of the Hilbert scheme of two points on a generic projective K3 surface.- Igor Dolgachev : Orbital counting of curves on algebraic surfaces and sphere packings.- V. Gritsenko and K. Hulek : Moduli of polarized Enriques surfaces.- Brendan Hassett and Yuri Tschinkel : Extremal rays and automorphisms of holomorphic symplectic varieties.- Gert Heckman and Sander Rieken : An odd presentation for W(E_6).- S. Katz, A. Klemm, and R. Pandharipande, with an appendix by R. P. Thomas : On the motivic stable pairs invariants of K3 surfaces.- Shigeyuki Kondö : The Igusa quartic and Borcherds products.- Christian Liedtke : Lectures on supersingular K3 surfaces and the crystalline Torelli theorem.- Daisuke Matsushita : On deformations of Lagrangian fibrations.- G. Oberdieck and R. Pandharipande : Curve counting on K3 x E,the Igusa cusp form X_10, and descendent integration.- Keiji Oguiso : Simple abelian varieties and primitive automorphisms of null entropy of surfaces.- Ichiro Shimada : The automorphism groups of certain singular K3 surfaces and an Enriques surface.- Alessandro Verra : Geometry of genus 8 Nikulin surfaces and rationality of their moduli.- Claire Voisin : Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties.