Fattorini | Infinite Dimensional Optimization and Control Theory | Buch | 978-0-521-45125-3 | sack.de

Buch, Englisch, Band 62, 816 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1374 g

Reihe: Encyclopedia of Mathematics and its Applications

Fattorini

Infinite Dimensional Optimization and Control Theory


Erscheinungsjahr 2009
ISBN: 978-0-521-45125-3
Verlag: Cambridge University Press

Buch, Englisch, Band 62, 816 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1374 g

Reihe: Encyclopedia of Mathematics and its Applications

ISBN: 978-0-521-45125-3
Verlag: Cambridge University Press


This book is on existence and necessary conditions, such as Potryagin's maximum principle, for optimal control problems described by ordinary and partial differential equations. These necessary conditions are obtained from Kuhn–Tucker theorems for nonlinear programming problems in infinite dimensional spaces. The optimal control problems include control constraints, state constraints and target conditions. Evolution partial differential equations are studied using semigroup theory, abstract differential equations in linear spaces, integral equations and interpolation theory. Existence of optimal controls is established for arbitrary control sets by means of a general theory of relaxed controls. Applications include nonlinear systems described by partial differential equations of hyperbolic and parabolic type and results on convergence of suboptimal controls.

Fattorini Infinite Dimensional Optimization and Control Theory jetzt bestellen!

Weitere Infos & Material


Part I. Finite Dimensional Control Problems: 1. Calculus of variations and control theory; 2. Optimal control problems without target conditions; 3. Abstract minimization problems: the minimum principle for the time optimal problem; 4. Abstract minimization problems: the minimum principle for general optimal control problems; Part II. Infinite Dimensional Control Problems: 5. Differential equations in Banach spaces and semigroup theory; 6. Abstract minimization problems in Hilbert spaces: applications to hyperbolic control systems; 7. Abstract minimization problems in Banach spaces: abstract parabolic linear and semilinear equations; 8. Interpolation and domains of fractional powers; 9. Linear control systems; 10. Optimal control problems with state constraints; 11. Optimal control problems with state constraints: The abstract parabolic case; Part III. Relaxed Controls: 12. Spaces of relaxed controls: topology and measure theory; 13. Relaxed controls in finite dimensional systems: existence theory; 14. Relaxed controls in infinite dimensional spaces: existence theory.


Fattorini, Hector O.
Hector O. Fattorini graduated from the Licenciado en Matemática, Universidad de Buenos Aires in 1960 and gained a Ph.D. in Mathematics from the Courant Institute of Mathematical Sciences, New York University, in 1965. Since 1967, he has been a member of the Department of Mathematics at the University of California, Los Angeles.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.