Buch, Englisch, Band 62, 816 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1374 g
Buch, Englisch, Band 62, 816 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1374 g
Reihe: Encyclopedia of Mathematics and its Applications
ISBN: 978-0-521-45125-3
Verlag: Cambridge University Press
This book is on existence and necessary conditions, such as Potryagin's maximum principle, for optimal control problems described by ordinary and partial differential equations. These necessary conditions are obtained from Kuhn–Tucker theorems for nonlinear programming problems in infinite dimensional spaces. The optimal control problems include control constraints, state constraints and target conditions. Evolution partial differential equations are studied using semigroup theory, abstract differential equations in linear spaces, integral equations and interpolation theory. Existence of optimal controls is established for arbitrary control sets by means of a general theory of relaxed controls. Applications include nonlinear systems described by partial differential equations of hyperbolic and parabolic type and results on convergence of suboptimal controls.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Regelungstechnik
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Mathematik Allgemein Diskrete Mathematik, Kombinatorik
- Mathematik | Informatik EDV | Informatik Informatik Berechenbarkeitstheorie, Komplexitätstheorie
Weitere Infos & Material
Part I. Finite Dimensional Control Problems: 1. Calculus of variations and control theory; 2. Optimal control problems without target conditions; 3. Abstract minimization problems: the minimum principle for the time optimal problem; 4. Abstract minimization problems: the minimum principle for general optimal control problems; Part II. Infinite Dimensional Control Problems: 5. Differential equations in Banach spaces and semigroup theory; 6. Abstract minimization problems in Hilbert spaces: applications to hyperbolic control systems; 7. Abstract minimization problems in Banach spaces: abstract parabolic linear and semilinear equations; 8. Interpolation and domains of fractional powers; 9. Linear control systems; 10. Optimal control problems with state constraints; 11. Optimal control problems with state constraints: The abstract parabolic case; Part III. Relaxed Controls: 12. Spaces of relaxed controls: topology and measure theory; 13. Relaxed controls in finite dimensional systems: existence theory; 14. Relaxed controls in infinite dimensional spaces: existence theory.