Flach / Dzeroski | Inductive Logic Programming | Buch | 978-3-540-66109-2 | sack.de

Buch, Englisch, Band 1634, 312 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1000 g

Reihe: Lecture Notes in Computer Science

Flach / Dzeroski

Inductive Logic Programming

9th International Workshop, ILP-99, Bled, Slovenia, June 24-27, 1999, Proceedings
1999
ISBN: 978-3-540-66109-2
Verlag: Springer Berlin Heidelberg

9th International Workshop, ILP-99, Bled, Slovenia, June 24-27, 1999, Proceedings

Buch, Englisch, Band 1634, 312 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1000 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-540-66109-2
Verlag: Springer Berlin Heidelberg


Shan-HweiNienhuys-Cheng(UniversityofRotterdam) DavidPage(UniversityofLouisville) BernhardPfahringer(AustrianResearchInstituteforAI) CelineRouveirol(UniversityofParis) ClaudeSammut(UniversityofNewSouthWales) MicheleSebag(EcolePolytechnique) AshwinSrinivasan(UniversityofOxford) PrasadTadepalli(OregonStateUniversity) StefanWrobel(GMDResearchCenterforInformationTechnology) OrganizationalSupport TheAlbatrossCongressTouristAgency,Bled Center for Knowledge Transfer in Information Technologies, Jo zef Stefan Institute,Ljubljana SponsorsofILP-99 ILPnet2,NetworkofExcellenceinInductiveLogicProgramming COMPULOGNet,EuropeanNetworkofExcellenceinComputationalLogic Jo zefStefanInstitute,Ljubljana LPASoftware,Inc. UniversityofBristol TableofContents I InvitedPapers ProbabilisticRelationalModels D. Koller. 3 InductiveDatabases(Abstract) H. Mannila. 14 SomeElementsofMachineLearning(ExtendedAbstract) J. R. Quinlan. 15 II ContributedPapers Re nementOperatorsCanBe(Weakly)Perfect L. Badea,M. Stanciu. 21 CombiningDivide-and-ConquerandSeparate-and-ConquerforE cientand E ectiveRuleInduction H. Bostr¨om,L. Asker. 33 Re ningCompleteHypothesesinILP I. Bratko. 44 AcquiringGraphicDesignKnowledge withNonmonotonicInductiveLearning K. Chiba,H. Ohwada,F. Mizoguchi. 56 MorphosyntacticTaggingofSloveneUsingProgol J. Cussens,S. D zeroski,T. Erjavec. 68 ExperimentsinPredictingBiodegradability S. D zeroski,H. Blockeel,B. Kompare,S. Kramer, B. Pfahringer,W. VanLaer. 80 1BC:AFirst-OrderBayesianClassi er P. Flach,N. Lachiche. 92 SortedDownwardRe nement:BuildingBackgroundKnowledge intoaRe nementOperatorforInductiveLogicProgramming A. M. Frisch. 104 AStrongCompleteSchemaforInductiveFunctionalLogicProgramming J. Hern andez-Orallo,M. J. Ram rez-Quintana. 116 ApplicationofDi erentLearningMethods toHungarianPart-of-SpeechTagging T. Horv ath,Z. Alexin,T. Gyim othy,S. Wrobel. 128 VIII TableofContents CombiningLAPISandWordNetfortheLearningofLRParserswith OptimalSemanticConstraints D. Kazakov. 140 LearningWordSegmentationRulesforTagPrediction D. Kazakov,S. Manandhar,T. Erjavec. 152 ApproximateILPRulesbyBackpropagationNeuralNetwork: AResultonThaiCharacterRecognition B. Kijsirikul,S. Sinthupinyo. 162 RuleEvaluationMeasures:AUnifyingView N. Lavra c,P. Flach,B. Zupan. 174 ImprovingPart-of-SpeechDisambiguationRulesbyAdding LinguisticKnowledge N. Lindberg,M. Eineborg. 186 OnSu cientConditionsforLearnabilityofLogicProgramsfrom PositiveData E. Martin,A. Sharma. 198 ABoundedSearchSpaceofClausalTheories H. Midelfart. 210 DiscoveringNewKnowledgefromGraphData UsingInductiveLogicProgramming T. Miyahara,T. Shoudai,T. Uchida,T. Kuboyama, K. Takahashi,H. Ueda.

Flach / Dzeroski Inductive Logic Programming jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


I Invited Papers.- Probabilistic Relational Models.- Inductive Databases.- Some Elements of Machine Learning.- II Contributed Papers.- Refinement Operators Can Be (Weakly) Perfect.- Combining Divide-and-Conquer and Separate-and-Conquer for Efficient and Effective Rule Induction.- Refining Complete Hypotheses in ILP.- Acquiring Graphic Design Knowledge with Nonmonotonic Inductive Learning.- Morphosyntactic Tagging of Slovene Using Progol.- Experiments in Predicting Biodegradability.- 1BC: A First-Order Bayesian Classifier.- Sorted Downward Refinement: Building Background Knowledge into a Refinement Operator for Inductive Logic Programming.- A Strong Complete Schema for Inductive Functional Logic Programming.- Application of Different Learning Methods to Hungarian Part-of-Speech Tagging.- Combining LAPIS and WordNet for the Learning of LR Parsers with Optimal Semantic Constraints.- Learning Word Segmentation Rules for Tag Prediction.- Approximate ILP Rules by Backpropagation Neural Network: A Result on Thai Character Recognition.- Rule Evaluation Measures: A Unifying View.- Improving Part of Speech Disambiguation Rules by Adding Linguistic Knowledge.- On Sufficient Conditions for Learnability of Logic Programs from Positive Data.- A Bounded Search Space of Clausal Theories.- Discovering New Knowledge from Graph Data Using Inductive Logic Programming.- Analogical Prediction.- Generalizing Refinement Operators to Learn Prenex Conjunctive Normal Forms.- Theory Recovery.- Instance based function learning.- Some Properties of Inverse Resolution in Normal Logic Programs.- An Assessment of ILP-assisted models for toxicology and the PTE-3 experiment.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.