Liebe Besucherinnen und Besucher,
heute ab 15 Uhr feiern wir unser Sommerfest und sind daher nicht erreichbar. Ab morgen sind wir wieder wie gewohnt für Sie da. Wir bitten um Ihr Verständnis – Ihr Team von Sack Fachmedien
Forster Analysis 3
3., durchgesehene Auflage 1999
ISBN: 978-3-322-91523-8
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark
Integralrechnung im Rn mit Anwendungen
E-Book, Deutsch, 285 Seiten, Web PDF
Reihe: vieweg studium; Aufbaukurs Mathematik
ISBN: 978-3-322-91523-8
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark
In einem ersten Teil wird das Lebesguesche Integral im R^n eingeführt und es werden die wichtigsten Sätze dieser Theorie bewiesen. Als Anwendungen werden u.a. die Lp-Räume und die Fouriertransformation behandelt. Als nächstes wird der Gaußsche Integralsatz bewiesen, der dann zum Studium der Potentialgleichung und zur Konstruktion von Fundamental-Lösungen einiger anderer partieller Differentialgleichungen benützt wird. In einem öetzten Teil wird schließlich der Differentialformenkalkül eingeführt. Dieser Teil enthält auch eine Theorie der Kurvenintegrale sowie den allgemeinen Stokesschen Integralsatz für Untermannigfaltigkeiten des R^n mit Anwendungen auf die Integralsätze für holomorphe Funktionen einer und mehrerer Variablen.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Weitere Infos & Material
§ 1 Integral für stetige Funktionen mit kompaktem Träger.- § 2 Transformationsformel.- § 3 Partielle Integration.- § 4 Integral für halbstetige Funktionen.- § 5 Berechnung einiger Volumina.- § 6 Lebesgue-integrierbare Funktionen.- § 7 Nullmengen.- § 8 Rotationssymmetrische Funktionen.- § 9 Konvergenzsätze.- § 10 Die Lp-Räume.- § 11 Parameterabhängige Integrale.- § 12 Fourier-Integrale.- § 13 Die Transformationsformel für Lebesgue-integrierbare Funktionen.- § 14 Integration auf Untermannigfaltigkeiten.- § 15 Der Gaußsche Integralsatz.- § 16 Die Potentialgleichung.- § 17 Distributionen.- § 18 Pfaffsche Formen. Kurvenintegrale.- § 19 Differentialformen höherer Ordnung.- § 20 Integration von Differentialformen.- § 21 Der Stokessche Integralsatz.- Literaturhinweise.- Symbolverzeichnis.- Namens- und Sachverzeichnis.