Francis-Staite / Joyce | C∞-Algebraic Geometry with Corners | Buch | 978-1-009-40016-9 | sack.de

Buch, Englisch, Band 490, 220 Seiten, Format (B × H): 152 mm x 228 mm, Gewicht: 363 g

Reihe: London Mathematical Society Lecture Note Series

Francis-Staite / Joyce

C∞-Algebraic Geometry with Corners


Erscheinungsjahr 2024
ISBN: 978-1-009-40016-9
Verlag: Cambridge University Press

Buch, Englisch, Band 490, 220 Seiten, Format (B × H): 152 mm x 228 mm, Gewicht: 363 g

Reihe: London Mathematical Society Lecture Note Series

ISBN: 978-1-009-40016-9
Verlag: Cambridge University Press


Schemes in algebraic geometry can have singular points, whereas differential geometers typically focus on manifolds which are nonsingular. However, there is a class of schemes, 'C8-schemes', which allow differential geometers to study a huge range of singular spaces, including 'infinitesimals' and infinite-dimensional spaces. These are applied in synthetic differential geometry, and derived differential geometry, the study of 'derived manifolds'. Differential geometers also study manifolds with corners. The cube is a 3-dimensional manifold with corners, with boundary the six square faces. This book introduces 'C8-schemes with corners', singular spaces in differential geometry with good notions of boundary and corners. They can be used to define 'derived manifolds with corners' and 'derived orbifolds with corners'. These have applications to major areas of symplectic geometry involving moduli spaces of J-holomorphic curves. This work will be a welcome source of information and inspiration for graduate students and researchers working in differential or algebraic geometry.

Francis-Staite / Joyce C∞-Algebraic Geometry with Corners jetzt bestellen!

Weitere Infos & Material


1. Introduction; 2. Background on C8-schemes 3. Background on manifolds with (g-)corners; 4. (Pre) C8-rings with corners; 5. C8-schemes with corners; 6. Boundaries, corners, and the corner functor; 7. Modules, and sheaves of modules; 8. Further generalizations and applications; References; Glossary of Notation; Index.


Joyce, Dominic
Dominic Joyce is Professor of Mathematics at Oxford University and a Senior Research Fellow at Lincoln College Oxford. He is the author of 'Compact Manifolds with Special Holonomy' (2000), 'Riemannian Holonomy Groups and Calibrated Geometry' (2007), 'A Theory of Generalized Donaldson-Thomas Invariants' (2012 co-authored with Yinan Song), and 'Algebraic Geometry over C8-rings' (2019). Joyce is winner of the LMS Whitehead and Fröhlich prizes, an EMS prize, the Adams prize, and he is a Fellow of the Royal Society.

Francis-Staite, Kelli
Kelli Francis-Staite read for her DPhil at the University of Oxford as a Rhodes Scholar. Her thesis developed the theory of C8-algebraic geometry with corners. She is currently an Adjunct Senior Lecturer at the University of Adelaide.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.