Fursikov / Galdi / Pukhnachev | New Directions in Mathematical Fluid Mechanics | E-Book | www.sack.de
E-Book

E-Book, Englisch, 432 Seiten, eBook

Reihe: Advances in Mathematical Fluid Mechanics

Fursikov / Galdi / Pukhnachev New Directions in Mathematical Fluid Mechanics

The Alexander V. Kazhikhov Memorial Volume
2010
ISBN: 978-3-0346-0152-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

The Alexander V. Kazhikhov Memorial Volume

E-Book, Englisch, 432 Seiten, eBook

Reihe: Advances in Mathematical Fluid Mechanics

ISBN: 978-3-0346-0152-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



On November 3, 2005, Alexander Vasil’evich Kazhikhov left this world, untimely and unexpectedly. He was one of the most in?uential mathematicians in the mechanics of ?uids, and will be remembered for his outstanding results that had, and still have, a c- siderablysigni?cantin?uenceinthe?eld.Amonghis manyachievements,werecall that he was the founder of the modern mathematical theory of the Navier-Stokes equations describing one- and two-dimensional motions of a viscous, compressible and heat-conducting gas. A brief account of Professor Kazhikhov’s contributions to science is provided in the following article “Scienti?c portrait of Alexander Vasil’evich Kazhikhov”. This volume is meant to be an expression of high regard to his memory, from most of his friends and his colleagues. In particular, it collects a selection of papers that represent the latest progress in a number of new important directions of Mathematical Physics, mainly of Mathematical Fluid Mechanics. These papers are written by world renowned specialists. Most of them were friends, students or colleagues of Professor Kazhikhov, who either worked with him directly, or met him many times in o?cial scienti?c meetings, where they had the opportunity of discussing problems of common interest.

Fursikov / Galdi / Pukhnachev New Directions in Mathematical Fluid Mechanics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Preface.- Scientific Portrait of Alexander Vasilievich Kazhikhov.- G.V. Alekseev and D.A. Tereshko; Boundary Control Problems for Stationary Equations of Heat Convection.- Y. Amirat and V. Shelukhin; Homogenization of the Poisson–Boltzmann Equation.- S.N. Antontsev and N.V. Chemetov; Superconducting Vortices: Chapman Full Model.- D. Bresch, E.D. Fernández-Nieto, I.R. Ionescu and P. Vigneaux; Augmented Lagrangian Method and Compressible Visco-plastic Flows: Applications to Shallow Dense Avalanches.- D. Bresch, B. Desjardins and E. Grenier; Oscillatory Limits with Changing Eigenvalues: A Formal Study.- A.Yu. Chebotarev; Finite-dimensional Control for the Navier–Stokes Equations.- H. Beirão da Veiga; On the Sharp Vanishing Viscosity Limit of Viscous Incompressible Fluid Flows.- E. Feireisl and A. Novotný; Small Péclet Number Approximation as a Singular Limit of the Full Navier-Stokes-Fourier System with Radiation.- E. Feireisl and A. Vasseur; New Perspectives in Fluid Dynamics: Mathematical Analysis of a Model Proposed by Howard Brenner.- J. Frehse and M. Ruzicka; Existence of a Regular Periodic Solution to the Rothe Approximation of the Navier–Stokes Equation in Arbitrary Dimension.- A.V. Fursikov and R. Rannacher; Optimal Neumann Control for the Two-dimensional Steady-state Navier-Stokes equations.- S. Itoh, N. Tanaka and A. Tani; On Some Boundary Value Problem for the Stokes Equations with a Parameter in an Infinite Sector.- A. Khludnev; Unilateral Contact Problems Between an Elastic Plate and a Beam.- W. Layton and A. Novotný; On Lighthill’s Acoustic Analogy for Low Mach Number Flows.- A.E. Mamontov; On the Uniqueness of Solutions to Boundary Value Problems for Non-stationary Euler Equations.- M. Padula; On NonlinearStability of MHD Equilibrium Figures.- V.V. Pukhnachev; Viscous Flows in Domains with a Multiply Connected Boundary.- E.V. Radkevich; Problems with Insufficient Information about Initial-boundary Data.- V.A. Solonnikov; On the Stability of Non-symmetric Equilibrium Figures of Rotating Self-gravitating Liquid not Subjected to Capillary Forces.- V.N. Starovoitov and B.N. Starovoitova; Dynamics of a Non-fixed Elastic Body.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.