Buch, Englisch, 146 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 418 g
ISBN: 978-0-8176-4387-4
Verlag: Birkhäuser Boston
This monograph examines and develops the Global Smoothness Preservation Property (GSPP) and the Shape Preservation Property (SPP) in the field of interpolation of functions. The study is developed for the univariate and bivariate cases using well-known classical interpolation operators of Lagrange, Grünwald, Hermite-Fejér and Shepard type. One of the first books on the subject, it presents interesting new results alongwith an excellent survey of past research.
Key features include:
- potential applications to data fitting, fluid dynamics, curves and surfaces, engineering, and computer-aided geometric design
- presents recent work featuring many new interesting results as well as an excellent survey of past research
- many interesting open problems for future research presented throughout the text
- includes 20 very suggestive figures of nine types of Shepard surfaces concerning their shape preservation property
- generic techniques of the proofs allow for easy application to obtaining similar results for other interpolation operators
This unique, well-written text is best suited to graduate students and researchers in mathematical analysis, interpolation of functions, pure and applied mathematicians in numerical analysis, approximation theory, data fitting, computer-aided geometric design, fluid mechanics, and engineering researchers.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Mathematik Allgemein Grundlagen der Mathematik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Mathematik | Informatik Mathematik Mathematische Analysis Reelle Analysis
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionentheorie, Komplexe Analysis
Weitere Infos & Material
Global Smoothness Preservation, Univariate Case.- Partial Shape Preservation, Univariate Case.- Global Smoothness Preservation, Bivariate Case.- Partial Shape Preservation, Bivariate Case.