Buch, Englisch, 146 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 418 g
ISBN: 978-0-8176-4387-4
Verlag: Birkhäuser Boston
This monograph examines in detail two aspects in the field of interpolation of functions -the Global Smoothness Preservation Property (GSPP) and the Shape Preservation Property (SPP). By considering well-known classical interpolation operators such as Lagrange, Grünwald, Hermite-Fejér and Shepard type, the study is mainly developed for the univariate and bivariate cases. One of the first books on the subject, it presents to the reader, recent work featuring many new interesting results in this field, including an excellent survey of past research. Accompanied by numerous open problems, an updated set of references, and an appendix featuring illustrations of nine types of Shepard surfaces, this unique text is best suited to graduate students and researchers in mathematical analysis, interpolation of functions, pure and applied mathematicians in numerical analysis, approximation theory, data fitting, computer aided geometric design, fluid mechanics, and engineering researchers.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein Grundlagen der Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionentheorie, Komplexe Analysis
- Mathematik | Informatik Mathematik Mathematische Analysis Reelle Analysis
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
Weitere Infos & Material
Global Smoothness Preservation, Univariate Case.- Partial Shape Preservation, Univariate Case.- Global Smoothness Preservation, Bivariate Case.- Partial Shape Preservation, Bivariate Case.




