Ganguly / Das / Rajabzadeh | Nanotechnology-Based Sensing Platforms for Illicit Drugs | Buch | 978-0-443-23740-9 | www.sack.de

Buch, Englisch, Format (B × H): 191 mm x 235 mm, Gewicht: 820 g

Ganguly / Das / Rajabzadeh

Nanotechnology-Based Sensing Platforms for Illicit Drugs


Erscheinungsjahr 2025
ISBN: 978-0-443-23740-9
Verlag: Elsevier Science & Technology

Buch, Englisch, Format (B × H): 191 mm x 235 mm, Gewicht: 820 g

ISBN: 978-0-443-23740-9
Verlag: Elsevier Science & Technology


Nanotechnology-Based Sensing Platforms for Illicit Drugs reviews different types of sensors that detect illicit drugs, with a special focus on the advantages provided by incorporating nanotechnology in their design. The book starts with the fundamentals, classification, progress, the current state of research on nanotechnology-based sensors, and an overview of materials commonly used. Subsequent chapters focus on the chemical interactive behaviors of drugs and their detection methods. It includes a thorough discussion on the design, fabrication, and characterization of sensors for illicit drug detection. Final sections provide an overall outlook on recent technological advances in drug detection devices and future research. This book is a valuable resource for researchers, scientists, and professionals interested in biosensors, nanotechnology, and their applications in illicit drug detection.

Ganguly / Das / Rajabzadeh Nanotechnology-Based Sensing Platforms for Illicit Drugs jetzt bestellen!

Weitere Infos & Material


1. General Introduction to nanotechnology based sensors
2. Classical materials for sensors
3. Chemical interactive behaviors of drugs
4. Drug detection methods
5. Design, and fabrication strategies of drug sensors
6. Characterization of various sensors
7. Electrochemical detection of illicit drugs
8. Colorimetric sensors for illicit drugs detection
9. Fluorescence based sensors for detection of illicit drugs
10. Surface-enhanced Raman spectroscopy for detection of illicit drugs
11. Chromatography for detection of illicit drugs
12. Devices for detection of illicit drugs
13. Rapid detection of illicit drugs in saliva
14. Advantages of point-of-care detections
15. Commercially adoptable Nanotechnology platform for illicit drug sensing


Srinivasan, Seshasai
Dr. Seshasai Srinivasan is an Associate Professor in McMaster University's Faculty of Engineering. Prior to this, he has held a Research Scientist and a part-time instructor position in the Department of Mechanical and Industrial Engineering of Ryerson University, a postdoctoral position at the Laboratory of Food Process Engineering of the Swiss Federal Institute of Technology (ETH-Zurich) in Switzerland and a Research Associate position in the Engine Research Center of the University of Wisconsin-Madison.

Rajabzadeh, Amin Reza
Dr. Amin Reza Rajabzadeh is an Associate Professor and former Chair of the Biotechnology Program at the School of Engineering Practice and Technology, McMaster University, Canada. Dr. Rajabzadeh specializes in the field of biochemical engineering with a focus on biosensors, bioseparation and purification, bioprocess monitoring and control, bioreactor design, and environmental engineering. Dr. Rajabzadeh is a Professional Engineer of Ontario and is a member of the Canadian Engineering Education Association and the American Society for Engineering Education. Dr. Rajab Zadeh was a MacPherson Leadership in Teaching and Learning (LTL) Fellow from 2017 to 2019.

Das, Poushali
Poushali Das is a Senior Research Scientist in the Faculty of Engineering at McMaster University, Canada. Her research interests include MXenes, multifunctional luminescent quantum dots, and applications in sensors, healthcare, smart nanocomposites, hydrogels, and 3D printing.

Ganguly, Sayan
Sayan Ganguly is a Senior Researcher at the University of Waterloo, Canada. His primary research interests include superabsorbent hydrogels, composite hydrogels, polymer-graphene nanocomposites, MXene-polymer systems, polymer composites for EMI shielding, and conducting polymer composites.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.