Gao / Matters-Kammerer / Milosevic | Batteryless mm-Wave Wireless Sensors | E-Book | www.sack.de
E-Book

E-Book, Englisch, 145 Seiten

Reihe: Analog Circuits and Signal Processing

Gao / Matters-Kammerer / Milosevic Batteryless mm-Wave Wireless Sensors


1. Auflage 2018
ISBN: 978-3-319-72980-0
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 145 Seiten

Reihe: Analog Circuits and Signal Processing

ISBN: 978-3-319-72980-0
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book describes the PREMISS system, which enables readers to overcome the limitations of state-of-the-art battery-less wireless sensors in size, cost, robustness and range, with a system concept for a 60 GHz wireless sensor system with monolithic sensors.  The authors demonstrate a system in which the wireless sensors consist of wireless power receiving, sensing and communication functions in a single chip, without external components, avoiding costly IC-interfaces that are sensitive to mechanical and thermal stress.

Hao Gao is an Assistant Professor in the Department of Electrical Engineering Eindhoven University of Technology, in The Netherlands. He received the B.Eng. degree from Southeast University, Nanjing, China, M.Sc from Delft University of Technology, Delft, The Netherlands and Ph.D. degree from Eindhoven University of Technology, Eindhoven, The Netherlands, in 2006, 2008 and 2015 respectively. In 2012, he was a European Marie Curie Researcher in Catena Wireless Electronics, Stockholm, Sweden. In 2014, he became a research scientist at Delft University of Technology, The Netherlands. Since 2106, he is an assistant professor at mixed-signal microelectronics group, Eindhoven University of Technology, involved in the area of RF and microwave research. He has received several awards including co-recipient of ISSCC 2015 Distinguished-Technical-Paper Award.Marion Matters-Kammerer is a Professor in the Department of Electrical Engineering Eindhoven University of Technology, in The Netherlands. She received the B.S. degree and Master of physics degree from the Ecole Normale Supérieure, Paris, France, in 1997 and 1998, respectively, the Physikdiplom degree from the Technical University of Berlin, Berlin, Germany, in 1998, and the Ph.D. in physics from RWTH Aachen, Aachen, Germany, in 2006. In 1999, she joined Philips Research Aachen, Aachen, Germany. In 2004, she joined Philips Research Eindhoven, Eindhoven, The Netherlands. In 2009 and 2010, she was a Lecturer and Guest Researcher with the Faculty of Electrical Engineering, RWTH Aachen, Aachen, Germany. Since 2011, she has been with the Technical University of Eindhoven, Eindhoven, The Netherlands, where she is involved in the area of electronic modules for terahertz imaging and spectroscopy, as well as ultra-high-speed circuits.Dusan Milosevic is an Assistant Professor in the Department of Electrical Engineering Eindhoven University of Technology, in The Netherlands. He received the M.S. degree in electronics and telecommunications engineering from the University of Nis, Serbia, in 2001, and the Ph.D. degree in electrical engineering from Eindhoven University of Technology, The Netherlands, in 2009. Since 2001 he has been with Eindhoven University of Technology. His research interests include RF and microwave power amplifiers and ultra-low power RF front ends. Peter Baltus was born on July 5th 1960 in Sittard and received his masters degree in Electrical Engineering from Eindhoven University of Technology in 1985, and his PhD degree from the same university in 2004. He worked for 22 years at Philips and later NXP in Eindhoven, Nijmegen, Tokyo and Sunnyvale in various functions, including research scientist, program manager, architect, domain manager, group leader and fellow in the areas of data converters, microcontroller architecture, digital design, software, and RF circuits and systems.  In 2007 he started his current job at the Eindhoven University of Technology as professor in high-frequency electronics. From 2007 through 2016 he was director of the Centre for Wireless Technology and as of 2017 he is chair of the mixed-signal micro-electronics group. He co-authored more than 150 papers and holds 17 US patents.

Gao / Matters-Kammerer / Milosevic Batteryless mm-Wave Wireless Sensors jetzt bestellen!

Weitere Infos & Material


1;Contents;6
2;List of Abbreviations;9
3;1 Introduction;11
3.1;1.1 Background;11
3.2;1.2 Scope of the Book;12
3.3;1.3 Outline of the Book;13
3.4;References;14
4;2 State of the Art;15
4.1;2.1 Introduction;15
4.2;2.2 Wireless Power Transfer;16
4.3;2.3 mm-Wave Wireless Power Transfer;17
4.4;2.4 Techniques for Low Power Consumption;17
4.5;2.5 Wirelessly Powered Sensor Node;18
4.6;2.6 Conclusion;19
4.7;References;19
5;3 System Analysis of mm-Wave Wireless Sensor Networks;22
5.1;3.1 Introduction;22
5.2;3.2 System Description;22
5.3;3.3 Link Budget Calculation;24
5.3.1;3.3.1 Downlink;24
5.3.2;3.3.2 Uplink;26
5.4;3.4 Conclusion;28
5.5;References;28
6;4 Rectifier Analysis;29
6.1;4.1 Introduction;29
6.2;4.2 Basic Rectifier Structure;29
6.3;4.3 Rectifier Performance Parameters;31
6.3.1;4.3.1 General Wireless Power System Architecture;31
6.3.2;4.3.2 Rectifier Performance Parameters;32
6.4;4.4 Rectifier Analysis and Modeling;33
6.4.1;4.4.1 Modeling of Rectifier with Low Input Power;34
6.4.1.1;4.4.1.1 Equilibrium Voltage;36
6.4.1.2;4.4.1.2 Input Resistance;37
6.4.1.3;4.4.1.3 Charging of the Storage Capacitor;38
6.4.1.4;4.4.1.4 Comparison with Circuit Simulation Results;39
6.4.2;4.4.2 Modeling of Rectifier with High Input Power;41
6.4.2.1;4.4.2.1 Choice of W/L;43
6.4.2.2;4.4.2.2 Maximum Efficiency;43
6.4.2.3;4.4.2.3 Relation Between Efficiency and Threshold Voltage;44
6.4.2.4;4.4.2.4 Relation Between Efficiency and Input Voltage;45
6.5;4.5 Limitations of Rectifier Modeling and Challenges;45
6.5.1;4.5.1 Rectifier Modeling Limitation;45
6.5.2;4.5.2 mm-Wave Rectifier Challenges;46
6.5.2.1;4.5.2.1 Efficiency;47
6.5.2.2;4.5.2.2 Sensitivity;48
6.6;4.6 Conclusion;48
6.7;References;49
7;5 mm-Wave Rectifiers;50
7.1;5.1 Introduction;50
7.2;5.2 Methods to Improve the mm-Wave Rectifier Performance;50
7.2.1;5.2.1 Threshold Voltage Modulation;51
7.2.2;5.2.2 Inductor Peaking;52
7.2.3;5.2.3 Output Filter;53
7.3;5.3 mm-Wave Rectifier Implementation and Measurement;54
7.3.1;5.3.1 Single-Stage Inductor-Peaked Rectifier with Output Filter;55
7.3.2;5.3.2 Multi-Stage Inductor-Peaked Rectifier with Output Filter;57
7.3.3;5.3.3 5060GHz Broadband Rectifier;60
7.4;5.4 Conclusions;62
7.5;References;64
8;6 mm-Wave Monolithic Integrated Sensor Nodes;66
8.1;6.1 Introduction;66
8.2;6.2 System Description;67
8.2.1;6.2.1 System Behavior Description;67
8.2.2;6.2.2 Two-Antenna Sensor Node System Architecture;68
8.2.3;6.2.3 One-Antenna Sensor Node System Architecture;69
8.2.4;6.2.4 Comparison of the Two Solutions;69
8.3;6.3 Circuit Design;70
8.3.1;6.3.1 Multi-Stage Rectifier for Wireless Power Receiver;70
8.3.2;6.3.2 End-of-Burst Monitor;71
8.3.3;6.3.3 RF Switch;71
8.3.4;6.3.4 On-Chip Antenna;73
8.3.5;6.3.5 Matching Between the Rectifier and the On-Chip Antenna;74
8.3.6;6.3.6 Transmitter with Temperature Sensing;76
8.4;6.4 mm-Wave Sensor Nodes Implementation;76
8.4.1;6.4.1 mm-Wave Sensor Node with Two Antennas;77
8.4.2;6.4.2 mm-Wave Sensor Node with One Antenna;80
8.5;6.5 Conclusion;81
8.6;References;84
9;7 mm-Wave Low-Power Receiver;86
9.1;7.1 Introduction;86
9.2;7.2 Radio-Triggered Passive Receiver Architecture;87
9.3;7.3 Energy Models;88
9.3.1;7.3.1 Antenna and Matching Network;88
9.3.2;7.3.2 RF Rectifier;89
9.3.3;7.3.3 LNA;90
9.3.4;7.3.4 Self-mixer;91
9.3.5;7.3.5 System Limitations;92
9.4;7.4 System Evaluation;93
9.5;7.5 Circuit Implementation for the 60GHz Ultra-Low-Power Receiver;94
9.5.1;7.5.1 60GHz Injection-Locked Oscillator;95
9.5.2;7.5.2 60GHz Low Power Differential LNA;97
9.5.3;7.5.3 60GHz Passive Mixer;100
9.5.4;7.5.4 60GHz Ultra-Low-Power OOK Receiver;102
9.5.5;7.5.5 60GHz Ultra-Low-Power OOK Receiver Measurement;102
9.6;7.6 Conclusion;104
9.7;References;106
10;8 mm-Wave Front-End Design for Phased-Array Systems;108
10.1;8.1 Introduction;108
10.2;8.2 Link Budget of the 60GHz Sensor Network;108
10.3;8.3 Phased-Array Architecture;109
10.3.1;8.3.1 Advantages of a Phased-Array Receiver Architecture;109
10.3.2;8.3.2 Signal Path Phase Shifting;111
10.3.3;8.3.3 RF Front-End and Specification;112
10.4;8.4 60GHz LNA;114
10.4.1;8.4.1 Technology;114
10.4.2;8.4.2 Topology Selection;115
10.4.3;8.4.3 Design Strategy;116
10.4.3.1;8.4.3.1 Simultaneous Noise and Gain Match;117
10.4.3.2;8.4.3.2 Noise Matching Between Cascode Transistors;120
10.4.4;8.4.4 Measurement Result;121
10.4.5;8.4.5 Conclusion;121
10.5;8.5 60GHz 5-Bit Digitally Controlled Phase Shifter;122
10.5.1;8.5.1 Phase Shift Realization;123
10.5.2;8.5.2 Phase Shifter Implementation;127
10.5.2.1;8.5.2.1 CMOS Switches;130
10.5.2.2;8.5.2.2 Sequence of Phase Shifting Stages;131
10.5.3;8.5.3 Phase Shift Schematic and Layout;132
10.5.4;8.5.4 Measurement Results and Comparison to State-of-the-Art;132
10.5.5;8.5.5 Conclusion;135
10.6;8.6 Conclusion;136
10.7;References;138
11;9 Conclusions;140
12;Index;142



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.