Buch, Englisch, 265 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 588 g
ISBN: 978-3-031-05370-2
Verlag: Springer International Publishing
The ability to generate, gather and store volumes of data in the order of tera- and exo bytes daily has far outpaced our ability to derive useful information with available computational resources for many domains.
This book focuses on data science and problem definition, data cleansing, feature selection and extraction,statistical, geometric, information-theoretic, biomolecular and machine learning methods for dimensionality reduction of big datasets and problem solving, as well as a comparative assessment of solutions in a real-world setting.
This book targets professionals working within related fields with an undergraduate degree in any science area, particularly quantitative. Readers should be able to follow examples in this book that introduce each method or technique. These motivating examples are followed by precise definitions of the technical concepts required and presentation of the results in general situations. These concepts require a degree of abstraction that can be followed by re-interpreting concepts like in the original example(s). Finally, each section closes with solutions to the original problem(s) afforded by these techniques, perhaps in various ways to compare and contrast dis/advantages to other solutions.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
Weitere Infos & Material
1. What is Data Science (DS)?.- 2. Solutions to Data Science Problems.- 3. What is Dimensionality Reduction (DR)?.- 4. Conventional Statistical Approaches.- 5. Geometric Approaches.- 6. Information-theoretic Approaches.- 7. Molecular Computing Approaches.- 8. Statistical Learning Approaches.- 9. Machine Learning Approaches.- 10. Metaheuristics of DR Methods.- 11. Appendices.