E-Book, Englisch, Band 10, 300 Seiten
Geddes / Lakowicz Advanced Concepts in Fluorescence Sensing
2005
ISBN: 978-0-387-23647-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Part B: Macromolecular Sensing
E-Book, Englisch, Band 10, 300 Seiten
Reihe: Topics in Fluorescence Spectroscopy
ISBN: 978-0-387-23647-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Over the last decade, fluorescence has become the dominant tool in biotechnology and medical imaging. These exciting advances have been underpinned by the advances in time-resolved techniques and instrumentation, probe design, chemical / biochemical sensing, coupled with our furthered knowledge in biology. Complementary volumes 9 & 10, Advanced Concepts of Fluorescence Sensing: Small Molecule Sensing and Advanced Concepts of Fluorescence Sensing: Macromolecular Sensing, aim to summarize the current state of the art in fluorescent sensing. For this reason, Drs. Geddes and Lakowicz have invited chapters, encompassing a broad range of fluorescence sensing techniques. Some chapters deal with small molecule sensors, such as for anions, cations, and CO2, while others summarize recent advances in protein-based and macromolecular sensors. The Editors have, however, not included DNA or RNA based sensing in this volume, as this were reviewed in Volume 7 and is to be the subject of a more detailed volume in the near future.
Autoren/Hrsg.
Weitere Infos & Material
1;CONTRIBUTORS;6
2;Preface ;8
3;Table of Contents ;10
4;PROTEIN-BASED BIOSENSORS WITHPOLARIZATION TRANSDUCTION;16
4.1;1.1. INTRODUCTION;16
4.2;1.2. PRINCIPLES OF OPERATION;16
4.3;1.3. ADVANTAGES OF ANISOTROPY-BASED SENSING;18
4.4;1.4. FLUORESCENCE POLARIZATION IMMUNOASSAY;19
4.5;1.5. ANISOTROPY-BASED METAL ION BIOSENSING;24
4.6;1.6. ANISOTROPY-BASED SENSING OF OTHERANALYTES USING PROTEINSAS TRANSDUCERS;30
4.7;1.7. CONCLUSIONS;31
4.8;1.8. ACKNOWLEDGMENTS;32
4.9;1.9. REFERENCES;32
5;GFP SENSORS;36
5.1;2.1. INTRODUCTION;36
5.2;2.2. GENERAL PRINCIPLES OF ENGINEERING FLUORESCENT PROTEINSENSORS;36
5.3;2.3. NEW GREEN AND RELATED FLUORESCENT PROTEINS;38
5.3.1;2.3.1. GFP Mutants;38
5.3.2;2.3.2. Novel Fluorescent Proteins;39
5.4;2.4. GFP-BASED SENSORS;39
5.4.1;2.4.1. pH Sensors;39
5.4.2;2.4.2. Chloride/Halide Sensors;41
5.4.3;2.4.3. Sensors of Protease Activity;43
5.4.4;2.4.4. Calcium Sensors;43
5.4.5;2.4.5. Sensors of Calcium-Calmodulin;45
5.4.6;2.4.6. Sensors of Other Second Messengers;45
5.4.7;2.4.7. Sensors of Protein Kinase Activity;46
5.4.8;2.4.8. Sensors of G proteins;47
5.4.9;2.4.9. Metabolite Sensors;48
5.4.10;2.4.10. Sensors of Reduction-Oxidation (Redox) Potential;48
5.4.11;2.4.11. Nitration Sensors;49
5.4.12;2.4.12. Voltage Sensors;49
5.5;2.5. PERSPECTIVE AND FUTURE DIRECTIONS;50
5.6;2.6. ACKNOWLEDGMENTS;50
5.7;2.7. REFERENCES;51
6;FLUORESCENT SACCHARIDE SENSORS;56
6.1;3.1. INTRODUCTION;56
6.2;3.2. READ-OUT;58
6.2.1;3.2.1. Internal Charge Transfer (ICT);58
6.2.2;3.2.2. Photoinduced electron transfer (PET);60
6.2.3;3.2.3. Others;61
6.3;3.3. INTERFACE;62
6.3.1;3.3.1. Internal Charge Transfer (ICT);62
6.3.2;3.3.2. Photoinduced electron transfer (PET);63
6.3.3;3.3.3. Others;69
6.4;3.4. FLUORESCENT ASSAY;71
6.5;3.5. POLYMER SUPPORTED SENSORS;75
6.6;3.6. CONCLUSIONS;77
6.7;3.7. REFERENCES;77
7;FLUORESCENT PEBBLE NANO-SENSORS AND NANOEXPLORERSFOR REAL-TIME INTRACELLULAR AND BIOMEDICAL APPLICATIONS;84
7.1;4.1. INTRODUCTION;84
7.1.1;4.1.1. Background and History;84
7.2;4.2. PEBBLE MATRICES: DESIGN, PRODUCTION, AND QUALITY CONTROL;87
7.2.1;4.2.1. Polyacrylamide PEBBLEs;88
7.2.2;4.2.2. Poly(decyl methacrylate) PEBBLEs;89
7.2.3;4.2.3. Polyethylene Glycol-Coated Sol-Gel Silica PEBBLEs;91
7.3;4.3. CLASSIFICATION AND CHARACTERIZATION OF PEBBLE SENSORS;94
7.3.1;4.3.1. Ion Sensors;94
7.3.2;4.3.2. Gas Sensors and Biosensors;106
7.4;4.4. PEBBLE SENSORS AND CHEMICAL IMAGING INSIDE LIVE CELLS;113
7.4.1;4.4.1. PEBBLE Delivery Methods;113
7.4.2;4.4.2. Typical Examples of Biological Applications o~ PEBBLE Nanosensors;115
7.5;4.5. ADVANTAGES AND LIMITATIONS OF PEBBLE SENSORS;120
7.6;4.6. NEW PEBBLE DESIGNS AND FUTURE DIRECTIONS;126
7.6.1;4.6.1. Free Radical Sensors;126
7.6.2;4.6.2. MOONs, Tweezers, and Targeting;127
7.6.3;4.6.3 Nano-explorers and Nano-actuators;135
7.7;4.7. ACKNOWLEDGMENTS;137
7.8;4.8. REFERENCES;138
8;APTAMERS AS EMERGING PROBES FOR MACROMOLECULAR SENSING;142
8.1;5.1. INTRODUCTION;142
8.2;5.2. IN VITRO SELECTION;142
8.3;5.3. ADAPTATION OF APTAMERS AS SIGNALING TRANSDUCTIONREAGENTS FOR MACROMOLECULAR SENSING;144
8.3.1;5.3.1. Signaling Aptamers Based on Fluorescence Intensity Changes;145
8.3.2;5.3.2. Aptamer Beacons Based on Fluorescence Resonance Energy Transfer;149
8.3.3;5.3.3. Signaling Aptamers Based on Fluorescence Anisotropy Changes;157
8.4;5.4. APPLICATION OF APTAMERS TO ARRAY FORMATS;158
8.4.1;5.4.1. Aptamer Chips for High-Throughput Screening;158
8.4.2;5.4.2. Sample Processing with Microwell-Based Aptamer Arrays;160
8.4.3;5.4.3. Chip-Based Detection of Changes in Aptamer Anisotropy;165
8.5;5.5. CONCLUSIONS AND FUTURE ASPECTS;166
8.6;5.6. ACKNOWLEDGMENTS;166
8.7;5.7. REFERENCES;166
9;MOLECULAR IMPRINTING;172
9.1;6.1 INTRODUCTION;172
9.2;6.2 SYNTHESIS AND EVALUATION OF MIPS;175
9.2.1;6.2.1 Components of MIPs;176
9.2.2;6.2.2 Preparation of MIPs;182
9.2.3;6.2.3 Evaluation of MIPs;186
9.3;6.3 DETECTION OF MIP-TARGET INTERACTIONS BY FLUORESCENCE;189
9.3.1;6.3.1 Nonfluorescent MIPs;189
9.3.2;6.3.2 Fluorescent MIPs;198
9.4;6.4 FLUORESCENT MIP-BASED BIOMIMETIC SENSORS;212
9.5;6.5 CONCLUSIONS AND FUTURE DIRECTIONS;213
9.6;6.6 ACKNOWLEDGEMENTS;215
9.7;6.7 REFERENCES;216
10;EXCIMER SENSING;226
10.1;7.1. INTRODUCTION;226
10.2;7.2. PYRENE EXCIMER AS SENSORY STRUCTURE PROBE OF THE ASSOCIATIONOF BIOMOLECULES;227
10.2.1;7.2.1. Excimers of Pyrene Derivatives on Macromolecular Templates;227
10.2.2;7.2.2. Considerations Regarding Pyrene Derivatives as Emission Probes forMacro-molecules;230
10.2.3;7.2.3. Application of Pyrene Fluorescence Probes to Studies of Proteins andPeptides;231
10.2.4;7.2.4. Pyrene-Iabeled DNA Strands Used for Molecular Recognition;233
10.2.5;7.2.5. Pyrenyl-containing Lipid Membranes;234
10.3;7.3. PYRENE EXCIMER EMISSION IN ENVIRONMENTAL AND CHEMICAL SENSING;236
10.3.1;7.3.1. Sensing of Temperature, Pressure and pH;236
10.3.2;7.3.2. Sensing of Oxygen;239
10.3.3;7.3.3. Sensing of Organic Guests by Modified y-Cyclodextrins;240
10.3.4;7.3.4. Sensing of Metal Cations;243
10.3.5;7.3.5. Other Miscellaneous Sensing Systems;250
10.4;7.4. CONCLUDING REMARKS;251
10.5;7.5. ACKNOWLEGEMENT;251
10.6;7.6. REFERENCES;252
11;LIFETIME BASED SENSORS / SENSING;256
11.1;8.1. INTRODUCTION;256
11.2;8.2. PHOTOPHYSICAL BACKGROUND;257
11.2.1;8.2.1. Luminescence Lifetime;257
11.2.2;8.2.2. Quantum Efficiency and Fluorescence Intensity;261
11.3;8.3. LIFETIME BASED SENSOR DEVICES AND INSTRUMENTATION;262
11.3.1;8.3.1. Optical Chemical Sensors;262
11.3.2;8.3.2. Advantages and Drawbacks of Lifetime-Based Sensors;262
11.3.3;8.3.3. Transduction Schemes;263
11.3.4;8.3.4. Sensor Elements;273
11.4;8.4. LIFETIME MEASUREMENT METHODS AND INSTRUMENTATION;280
11.4.1;8.4.1. Time-Domain Methods;280
11.4.2;8.4.2. Frequency-Domain Methods;283
11.5;8.5. SUMMARY;287
11.6;8.6. ACKNOWLEDGEMENT;288
11.7;8.7. REFERENCES;288
12;INDEX;290




