Geddes / Lakowicz | Advanced Concepts in Fluorescence Sensing | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 10, 300 Seiten

Reihe: Topics in Fluorescence Spectroscopy

Geddes / Lakowicz Advanced Concepts in Fluorescence Sensing

Part B: Macromolecular Sensing
2005
ISBN: 978-0-387-23647-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Part B: Macromolecular Sensing

E-Book, Englisch, Band 10, 300 Seiten

Reihe: Topics in Fluorescence Spectroscopy

ISBN: 978-0-387-23647-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Over the last decade, fluorescence has become the dominant tool in biotechnology and medical imaging. These exciting advances have been underpinned by the advances in time-resolved techniques and instrumentation, probe design, chemical / biochemical sensing, coupled with our furthered knowledge in biology. Complementary volumes 9 & 10, Advanced Concepts of Fluorescence Sensing: Small Molecule Sensing and Advanced Concepts of Fluorescence Sensing: Macromolecular Sensing, aim to summarize the current state of the art in fluorescent sensing. For this reason, Drs. Geddes and Lakowicz have invited chapters, encompassing a broad range of fluorescence sensing techniques. Some chapters deal with small molecule sensors, such as for anions, cations, and CO2, while others summarize recent advances in protein-based and macromolecular sensors. The Editors have, however, not included DNA or RNA based sensing in this volume, as this were reviewed in Volume 7 and is to be the subject of a more detailed volume in the near future.

Geddes / Lakowicz Advanced Concepts in Fluorescence Sensing jetzt bestellen!

Weitere Infos & Material


1;CONTRIBUTORS;6
2;Preface ;8
3;Table of Contents ;10
4;PROTEIN-BASED BIOSENSORS WITHPOLARIZATION TRANSDUCTION;16
4.1;1.1. INTRODUCTION;16
4.2;1.2. PRINCIPLES OF OPERATION;16
4.3;1.3. ADVANTAGES OF ANISOTROPY-BASED SENSING;18
4.4;1.4. FLUORESCENCE POLARIZATION IMMUNOASSAY;19
4.5;1.5. ANISOTROPY-BASED METAL ION BIOSENSING;24
4.6;1.6. ANISOTROPY-BASED SENSING OF OTHERANALYTES USING PROTEINSAS TRANSDUCERS;30
4.7;1.7. CONCLUSIONS;31
4.8;1.8. ACKNOWLEDGMENTS;32
4.9;1.9. REFERENCES;32
5;GFP SENSORS;36
5.1;2.1. INTRODUCTION;36
5.2;2.2. GENERAL PRINCIPLES OF ENGINEERING FLUORESCENT PROTEINSENSORS;36
5.3;2.3. NEW GREEN AND RELATED FLUORESCENT PROTEINS;38
5.3.1;2.3.1. GFP Mutants;38
5.3.2;2.3.2. Novel Fluorescent Proteins;39
5.4;2.4. GFP-BASED SENSORS;39
5.4.1;2.4.1. pH Sensors;39
5.4.2;2.4.2. Chloride/Halide Sensors;41
5.4.3;2.4.3. Sensors of Protease Activity;43
5.4.4;2.4.4. Calcium Sensors;43
5.4.5;2.4.5. Sensors of Calcium-Calmodulin;45
5.4.6;2.4.6. Sensors of Other Second Messengers;45
5.4.7;2.4.7. Sensors of Protein Kinase Activity;46
5.4.8;2.4.8. Sensors of G proteins;47
5.4.9;2.4.9. Metabolite Sensors;48
5.4.10;2.4.10. Sensors of Reduction-Oxidation (Redox) Potential;48
5.4.11;2.4.11. Nitration Sensors;49
5.4.12;2.4.12. Voltage Sensors;49
5.5;2.5. PERSPECTIVE AND FUTURE DIRECTIONS;50
5.6;2.6. ACKNOWLEDGMENTS;50
5.7;2.7. REFERENCES;51
6;FLUORESCENT SACCHARIDE SENSORS;56
6.1;3.1. INTRODUCTION;56
6.2;3.2. READ-OUT;58
6.2.1;3.2.1. Internal Charge Transfer (ICT);58
6.2.2;3.2.2. Photoinduced electron transfer (PET);60
6.2.3;3.2.3. Others;61
6.3;3.3. INTERFACE;62
6.3.1;3.3.1. Internal Charge Transfer (ICT);62
6.3.2;3.3.2. Photoinduced electron transfer (PET);63
6.3.3;3.3.3. Others;69
6.4;3.4. FLUORESCENT ASSAY;71
6.5;3.5. POLYMER SUPPORTED SENSORS;75
6.6;3.6. CONCLUSIONS;77
6.7;3.7. REFERENCES;77
7;FLUORESCENT PEBBLE NANO-SENSORS AND NANOEXPLORERSFOR REAL-TIME INTRACELLULAR AND BIOMEDICAL APPLICATIONS;84
7.1;4.1. INTRODUCTION;84
7.1.1;4.1.1. Background and History;84
7.2;4.2. PEBBLE MATRICES: DESIGN, PRODUCTION, AND QUALITY CONTROL;87
7.2.1;4.2.1. Polyacrylamide PEBBLEs;88
7.2.2;4.2.2. Poly(decyl methacrylate) PEBBLEs;89
7.2.3;4.2.3. Polyethylene Glycol-Coated Sol-Gel Silica PEBBLEs;91
7.3;4.3. CLASSIFICATION AND CHARACTERIZATION OF PEBBLE SENSORS;94
7.3.1;4.3.1. Ion Sensors;94
7.3.2;4.3.2. Gas Sensors and Biosensors;106
7.4;4.4. PEBBLE SENSORS AND CHEMICAL IMAGING INSIDE LIVE CELLS;113
7.4.1;4.4.1. PEBBLE Delivery Methods;113
7.4.2;4.4.2. Typical Examples of Biological Applications o~ PEBBLE Nanosensors;115
7.5;4.5. ADVANTAGES AND LIMITATIONS OF PEBBLE SENSORS;120
7.6;4.6. NEW PEBBLE DESIGNS AND FUTURE DIRECTIONS;126
7.6.1;4.6.1. Free Radical Sensors;126
7.6.2;4.6.2. MOONs, Tweezers, and Targeting;127
7.6.3;4.6.3 Nano-explorers and Nano-actuators;135
7.7;4.7. ACKNOWLEDGMENTS;137
7.8;4.8. REFERENCES;138
8;APTAMERS AS EMERGING PROBES FOR MACROMOLECULAR SENSING;142
8.1;5.1. INTRODUCTION;142
8.2;5.2. IN VITRO SELECTION;142
8.3;5.3. ADAPTATION OF APTAMERS AS SIGNALING TRANSDUCTIONREAGENTS FOR MACROMOLECULAR SENSING;144
8.3.1;5.3.1. Signaling Aptamers Based on Fluorescence Intensity Changes;145
8.3.2;5.3.2. Aptamer Beacons Based on Fluorescence Resonance Energy Transfer;149
8.3.3;5.3.3. Signaling Aptamers Based on Fluorescence Anisotropy Changes;157
8.4;5.4. APPLICATION OF APTAMERS TO ARRAY FORMATS;158
8.4.1;5.4.1. Aptamer Chips for High-Throughput Screening;158
8.4.2;5.4.2. Sample Processing with Microwell-Based Aptamer Arrays;160
8.4.3;5.4.3. Chip-Based Detection of Changes in Aptamer Anisotropy;165
8.5;5.5. CONCLUSIONS AND FUTURE ASPECTS;166
8.6;5.6. ACKNOWLEDGMENTS;166
8.7;5.7. REFERENCES;166
9;MOLECULAR IMPRINTING;172
9.1;6.1 INTRODUCTION;172
9.2;6.2 SYNTHESIS AND EVALUATION OF MIPS;175
9.2.1;6.2.1 Components of MIPs;176
9.2.2;6.2.2 Preparation of MIPs;182
9.2.3;6.2.3 Evaluation of MIPs;186
9.3;6.3 DETECTION OF MIP-TARGET INTERACTIONS BY FLUORESCENCE;189
9.3.1;6.3.1 Nonfluorescent MIPs;189
9.3.2;6.3.2 Fluorescent MIPs;198
9.4;6.4 FLUORESCENT MIP-BASED BIOMIMETIC SENSORS;212
9.5;6.5 CONCLUSIONS AND FUTURE DIRECTIONS;213
9.6;6.6 ACKNOWLEDGEMENTS;215
9.7;6.7 REFERENCES;216
10;EXCIMER SENSING;226
10.1;7.1. INTRODUCTION;226
10.2;7.2. PYRENE EXCIMER AS SENSORY STRUCTURE PROBE OF THE ASSOCIATIONOF BIOMOLECULES;227
10.2.1;7.2.1. Excimers of Pyrene Derivatives on Macromolecular Templates;227
10.2.2;7.2.2. Considerations Regarding Pyrene Derivatives as Emission Probes forMacro-molecules;230
10.2.3;7.2.3. Application of Pyrene Fluorescence Probes to Studies of Proteins andPeptides;231
10.2.4;7.2.4. Pyrene-Iabeled DNA Strands Used for Molecular Recognition;233
10.2.5;7.2.5. Pyrenyl-containing Lipid Membranes;234
10.3;7.3. PYRENE EXCIMER EMISSION IN ENVIRONMENTAL AND CHEMICAL SENSING;236
10.3.1;7.3.1. Sensing of Temperature, Pressure and pH;236
10.3.2;7.3.2. Sensing of Oxygen;239
10.3.3;7.3.3. Sensing of Organic Guests by Modified y-Cyclodextrins;240
10.3.4;7.3.4. Sensing of Metal Cations;243
10.3.5;7.3.5. Other Miscellaneous Sensing Systems;250
10.4;7.4. CONCLUDING REMARKS;251
10.5;7.5. ACKNOWLEGEMENT;251
10.6;7.6. REFERENCES;252
11;LIFETIME BASED SENSORS / SENSING;256
11.1;8.1. INTRODUCTION;256
11.2;8.2. PHOTOPHYSICAL BACKGROUND;257
11.2.1;8.2.1. Luminescence Lifetime;257
11.2.2;8.2.2. Quantum Efficiency and Fluorescence Intensity;261
11.3;8.3. LIFETIME BASED SENSOR DEVICES AND INSTRUMENTATION;262
11.3.1;8.3.1. Optical Chemical Sensors;262
11.3.2;8.3.2. Advantages and Drawbacks of Lifetime-Based Sensors;262
11.3.3;8.3.3. Transduction Schemes;263
11.3.4;8.3.4. Sensor Elements;273
11.4;8.4. LIFETIME MEASUREMENT METHODS AND INSTRUMENTATION;280
11.4.1;8.4.1. Time-Domain Methods;280
11.4.2;8.4.2. Frequency-Domain Methods;283
11.5;8.5. SUMMARY;287
11.6;8.6. ACKNOWLEDGEMENT;288
11.7;8.7. REFERENCES;288
12;INDEX;290



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.