Buch, Englisch, 523 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1650 g
Reihe: Modern Birkhäuser Classics
Buch, Englisch, 523 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1650 g
Reihe: Modern Birkhäuser Classics
ISBN: 978-0-8176-4770-4
Verlag: Birkhäuser Boston
“This book revives and vastly expands the classical theory of resultants and discriminants. Most of the main new results of the book have been published earlier in more than a dozen joint papers of the authors. The book nicely complements these original papers with many examples illustrating both old and new results of the theory.”
Mathematical Reviews
“Collecting and extending the fundamental and highly original results of the authors, it presents a unique blend of classical mathematics and very recent developments in algebraic geometry, homological algebra, and combinatorial theory.”
Zentralblatt Math
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Geometrie Algebraische Geometrie
- Mathematik | Informatik Mathematik Operations Research Graphentheorie
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
- Mathematik | Informatik Mathematik Algebra Elementare Algebra
- Mathematik | Informatik Mathematik Algebra Homologische Algebra
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Mathematik | Informatik Mathematik Geometrie Differentialgeometrie
Weitere Infos & Material
General Discriminants and Resultants.- Projective Dual Varieties and General Discriminants.- The Cayley Method for Studying Discriminants.- Associated Varieties and General Resultants.- Chow Varieties.- A-Discriminants and A-Resultants.- Toric Varieties.- Newton Polytopes and Chow Polytopes.- Triangulations and Secondary Polytopes.- A-Resultants and Chow Polytopes of Toric Varieties.- A-Discriminants.- Principal A-Determinants.- Regular A-Determinants and A-Discriminants.- Classical Discriminants and Resultants.- Discriminants and Resultants for Polynomials in One Variable.- Discriminants and Resultants for Forms in Several Variables.- Hyperdeterminants.