Gerdts | Optimal Control of ODEs and DAEs | Buch | 978-3-11-024995-8 | sack.de

Buch, Englisch, 458 Seiten, Format (B × H): 171 mm x 245 mm, Gewicht: 872 g

Reihe: De Gruyter Textbook

Gerdts

Optimal Control of ODEs and DAEs


1. Auflage 2011
ISBN: 978-3-11-024995-8
Verlag: De Gruyter

Buch, Englisch, 458 Seiten, Format (B × H): 171 mm x 245 mm, Gewicht: 872 g

Reihe: De Gruyter Textbook

ISBN: 978-3-11-024995-8
Verlag: De Gruyter


The intention of this textbook is to provide both, the theoretical and computational tools that are necessary to investigate and to solve optimal control problems with ordinary differential equations and differential-algebraic equations. An emphasis is placed on the interplay between the continuous optimal control problem, which typically is defined and analyzed in a Banach space setting, and discrete optimal control problems, which are obtained by discretization and lead to finite dimensional optimization problems. The book addresses primarily master and PhD students as well as researchers in applied mathematics, but also engineers or scientists with a good background in mathematics and interest in optimal control. The theoretical parts of the book require some knowledge of functional analysis, the numerically oriented parts require knowledge from linear algebra and numerical analysis. Examples are provided for illustration purposes.

Gerdts Optimal Control of ODEs and DAEs jetzt bestellen!

Zielgruppe


Graduate Students, Researchers, and Lecturers in Mathematics and Applied Mathematics; Mathematicians and Engineers in the Technical and Chemical Industry; Academic Libraries


Autoren/Hrsg.


Weitere Infos & Material


1 Introduction
2 Basics from Functional Analysis
2.1 Vector Spaces
2.2 Mappings, Dual Spaces, and Properties
2.3 Function Spaces
2.4 Stieltjes Integral
2.5 Set Arithmetic
2.6 Separation Theorems
2.7 Derivatives
2.8 Variational Equalities and Inequalities
3 Infinite and Finite Dimensional Optimization Problems
3.1 Problem Classes
3.2 Existence of a Solution
3.3 Conical Approximation of Sets
3.4 First Order Necessary Conditions of Fritz-John Type
3.5 Constraint Qualifications
3.6 Necessary and Sufficient Conditions in Finte Dimensions
3.7 Perturbed Nonlinear Optimization Problems
3.8 Numerical Methods
3.9 Duality
3.10 Mixed-Integer Nonlinear Programs and Branch&Bound
4 Local Minimum Principles
4.1 Local Minimum Principles for Index-2 Problems
4.2 Local Minimum Principles for Index-1 Problems
5 Discretization Methods for ODEs and DAEs
5.1 General Discretization Theory
5.2 Backward Differentiation Formulae (BDF)
5.3 Implicit Runge-Kutta Methods
5.4 Linearized Implicit Runge-Kutta Methods
6 Discretization of Optimal Control Problems
6.1 Direct Discretization Methods
6.2 Calculation of Gradients
6.3 Numerical Example
6.4 Discrete Minimum Principle and Approximation of Adjoints
6.5 Convergence
7 Selected Applications and Extensions
7.1 Mixed-Integer Optimal Control
7.2 Open-Loop-Real-Time Control
7.3 Dynamic Parameter Identification


Gerdts, Matthias
Matthias Gerdts, Universität der Bundeswehr München, Germany.

Matthias Gerdts, Universität der Bundeswehr München, Germany.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.