Giancola / Valenti / Sala A Survey on 3D Cameras: Metrological Comparison of Time-of-Flight, Structured-Light and Active Stereoscopy Technologies
1. Auflage 2018
ISBN: 978-3-319-91761-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 96 Seiten
Reihe: Computer Science
ISBN: 978-3-319-91761-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book is a valuable resource to deeply understand the technology used in 3D cameras. In this book, the authors summarize and compare the specifications of the main 3D cameras available in the mass market. The authors present a deep metrological analysis of the main camera based on the three main technologies: Time-of-Flight, Structured-Light and Active Stereoscopy, and provide qualitative results for any user to understand the underlying technology within 3D camera, as well as practical guidance on how to get the most of them for a given application.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Acronyms;10
4;1 Introduction;11
5;2 3D Shape Acquisition;14
5.1;2.1 Camera Model;14
5.1.1;2.1.1 Linear Camera Model;15
5.1.2;2.1.2 Non-linear Camera Model;19
5.2;2.2 Depth by Triangulation;21
5.2.1;2.2.1 Stereoscopy;21
5.2.2;2.2.2 Epipolar Geometry;23
5.2.3;2.2.3 Dense Stereoscopy;25
5.2.4;2.2.4 Active Stereoscopy;25
5.2.5;2.2.5 Structured-Light;27
5.3;2.3 Depth by Time-of-Flight;29
5.3.1;2.3.1 Time-of-Flight Signal;29
5.3.2;2.3.2 Time-of-Flight Cameras;35
5.4;2.4 From Depth Map to Point Cloud;35
6;3 State-of-the-Art Devices Comparison;38
6.1;3.1 PMD Technologies;38
6.2;3.2 MESA Imaging;38
6.3;3.3 PrimeSense;39
6.4;3.4 Microsoft Kinect;40
6.5;3.5 Texas Instrument OPT8140;42
6.6;3.6 Google Tango™;43
6.7;3.7 Orbbec;44
6.8;3.8 Intel RealSense™;44
6.9;3.9 StereoLabs ZED™: Passive Stereo;46
6.10;3.10 Discussion;47
7;4 Metrological Qualification of the Kinect V2™ Time-of-Flight Camera;49
7.1;4.1 Time-of-Flight Modulated Signal;49
7.2;4.2 Temperature and Stability;52
7.3;4.3 Pixel-Wise Characterization;54
7.3.1;4.3.1 Setup;55
7.3.2;4.3.2 Random Component of the Uncertainty in Space;55
7.3.3;4.3.3 Bias Component of the Uncertainty in Space;57
7.3.4;4.3.4 Error Due to the Incidence Angle on the Target;58
7.3.5;4.3.5 Error Due to the Target Characteristics;59
7.3.5.1;4.3.5.1 Focus on Color;60
7.3.5.2;4.3.5.2 Focus on Material;60
7.3.5.3;4.3.5.3 Reflectivity;61
7.4;4.4 Sensor-Wise Characterization;62
7.4.1;4.4.1 Known Geometry Reconstructions;62
7.4.1.1;4.4.1.1 Plane;62
7.4.1.2;4.4.1.2 Cylinder;63
7.4.1.3;4.4.1.3 Sphere;64
7.4.2;4.4.2 Mixed Pixels Error;64
7.4.3;4.4.3 Multiple Path Error;65
7.5;4.5 Conclusion;68
8;5 Metrological Qualification of the Orbbec Astra S™ Structured-Light Camera;69
8.1;5.1 Preliminary Experiments;69
8.2;5.2 Random Error Component Estimation;72
8.3;5.3 Systematic Error Component Estimation;74
8.4;5.4 Shape Reconstruction;75
8.4.1;5.4.1 Sphere;75
8.4.2;5.4.2 Cylinder;75
8.4.2.1;5.4.2.1 Concave Corner Shape;76
8.5;5.5 Conclusion;77
9;6 Metrological Qualification of the Intel D400™ Active Stereoscopy Cameras;78
9.1;6.1 Preliminary Experiments;78
9.2;6.2 Pixel-Wise Characterization;82
9.2.1;6.2.1 Random Component of the Uncertainty in Space;83
9.2.2;6.2.2 Bias Component of the Uncertainty in Space;84
9.2.3;6.2.3 Uncertainty Due to the Orientated Surfaces;86
9.3;6.3 Sensor-Wise Characterization;88
9.3.1;6.3.1 Plane Reconstruction;88
9.3.2;6.3.2 Cylinder Reconstruction;88
9.3.3;6.3.3 Sphere Reconstruction;89
9.3.4;6.3.4 Mixed Pixels Error;89
9.4;6.4 Conclusion;90
10;7 Conclusion;93
11;References;95




