Buch, Englisch, Band 314, 190 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 670 g
A Functional Analytic Approach
Buch, Englisch, Band 314, 190 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 670 g
Reihe: Lecture Notes in Control and Information Sciences
ISBN: 978-3-540-23984-0
Verlag: Springer
Explicit Stability Conditions for Continuous Systems deals with non-autonomous linear and nonlinear continuous finite dimensional systems. Explicit conditions for the asymptotic, absolute, input-to-state and orbital stabilities are discussed. This monograph provides new tools for specialists in control system theory and stability theory of ordinary differential equations, with a special emphasis on the Aizerman problem. A systematic exposition of the approach to stability analysis based on estimates for matrix-valued functions is suggested and various classes of systems are investigated from a unified viewpoint.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Überwachungstechnik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Statik, Dynamik, Kinetik, Kinematik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Technische Wissenschaften Technik Allgemein Mess- und Automatisierungstechnik
Weitere Infos & Material
Preliminaries.- Perturbations of Linear Systems.- Linear Systems with Slowly Varying Coefficients.- Linear Dissipative and Piecewise Constant Systems.- Nonlinear Systems with Autonomous Linear Parts.- The Aizerman Problem.- Nonlinear Systems with Time-Variant Linear Parts.- Essentially Nonlinear Systems.- The Lur'e Type Systems.- The Aizerman Type Problem for Nonautonomous Systems.- Input - State Stability.- Orbital Stability and Forced Oscillations.- Positive and Nontrivial Steady States.