Goldstein | Differential Equations with Applications in Biology, Physics, and Engineering | Buch | 978-1-138-41775-5 | sack.de

Buch, Englisch, 352 Seiten, Format (B × H): 260 mm x 184 mm, Gewicht: 804 g

Reihe: Lecture Notes in Pure and Applied Mathematics

Goldstein

Differential Equations with Applications in Biology, Physics, and Engineering


1. Auflage 2017
ISBN: 978-1-138-41775-5
Verlag: Taylor & Francis Ltd

Buch, Englisch, 352 Seiten, Format (B × H): 260 mm x 184 mm, Gewicht: 804 g

Reihe: Lecture Notes in Pure and Applied Mathematics

ISBN: 978-1-138-41775-5
Verlag: Taylor & Francis Ltd


Suitable as a textbook for a graduate seminar in mathematical modelling, and as a resource for scientists in a wide range of disciplines. Presents 22 lectures from an international conference in Leibnitz, Austria (no date mentioned), explaining recent developments and results in differential equatio

Goldstein Differential Equations with Applications in Biology, Physics, and Engineering jetzt bestellen!

Zielgruppe


Professional


Autoren/Hrsg.


Weitere Infos & Material


Preface; List of Participants; Variational Inequalities and the Contact of Elastic Plates; Analytic Semigroups: Applications to Inverse Problems for Flexible Structures; A Maximum Principle for Semilinear Parabolic Network Equations; Pair Formation in Structured Populations; Positivity for Operator Matrices; Time Dependent Differential Equations in Non Reflexive Banach Spaces; Towards a Numerical Analysis of the Escalator Boxcar Train; A n Application of Polynomial Operator Matrices to a Second Order Cauchy Problem; Asymptotic Convergence for a Class of Auto catalytic Chemical Systems; Second Order Parabolic Equations in Banach Space; On the Modified Korteweg-deVries Equation;I ntegrodifferential Equations with Nondensely Defined Operators; On Nodes of Local Solutions to Schrôdinger Equations; On Integro-Differential Equations with Weakly Singular Kernels; Ground States of Semi-Linear Diffusion Equations; Uniform Energy Decay of a Class of Cantilevered Nonlinear Beams with Nonlinear Dissipation at the Free End; Neumann Boundary Stabilization of Structurally Damped Time Periodic Wave and Plate Equations; Convergence in Lotka-Volterra Systems with Diffusion and Delay; Exact Finite Dimensional Representations of Models for Physiologically Structured Populations. I:The Abstract Foundations of Linear Chain Trickery; The Nonrelativistic Limit of Klein-Gordon and Dirac Equations; Spatially Degenerate Diffusion with Periodic-Like Boundary Conditions; Scattering Theory of a Supersymmetric Dirac Operator.


Jerome A. Goldstein Department of Mathematics Tulane University New Orleans, Louisiana. Franz and Kappe l Wilhelm, Schappachen Institute for Mathematics University of Graz, Austria.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.