Gondro / Hayes / van der Werf | Genome-Wide Association Studies and Genomic Prediction | Buch | 978-1-4939-5964-8 | www.sack.de

Buch, Englisch, Band 1019, 566 Seiten, Previously published in hardcover, Format (B × H): 178 mm x 254 mm, Gewicht: 10743 g

Reihe: Methods in Molecular Biology

Gondro / Hayes / van der Werf

Genome-Wide Association Studies and Genomic Prediction


Softcover Nachdruck of the original 1. Auflage 2013
ISBN: 978-1-4939-5964-8
Verlag: Humana Press

Buch, Englisch, Band 1019, 566 Seiten, Previously published in hardcover, Format (B × H): 178 mm x 254 mm, Gewicht: 10743 g

Reihe: Methods in Molecular Biology

ISBN: 978-1-4939-5964-8
Verlag: Humana Press


With the detailed genomic information that is now becoming available, we have a plethora of data that allows researchers to address questions in a variety of areas. Genome-wide association studies (GWAS) have become a vital approach to identify candidate regions associated with complex diseases in human medicine, production traits in agriculture, and variation in wild populations.  Genomic prediction goes a step further, attempting to predict phenotypic variation in these traits from genomic information.  Genome-Wide Association Studies and Genomic Prediction pulls together expert contributions to address this important area of study.  The volume begins with a section covering the phenotypes of interest as well as design issues for GWAS, then moves on to discuss efficient computational methods to store and handle large datasets, quality control measures, phasing, haplotype inference, and imputation.  Later chapters deal with statistical approaches to data analysis where the experimental objective is either to confirm the biology by identifying genomic regions associated to a trait or to use the data to make genomic predictions about a future phenotypic outcome (e.g. predict onset of disease). As part of the Methods in Molecular Biology series, chapters provide helpful, real-world implementation advice.
Gondro / Hayes / van der Werf Genome-Wide Association Studies and Genomic Prediction jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


1. R for Genome-Wide Association Studies

            Cedric Gondro, Laercio R. Porto-Neto, and Seung Hwan Lee

2. Descriptive Statistics of Data: Understanding the Data Set and Phenotypes of Interest

            Sonja Dominik

3. Designing a Genome-Wide Association Studies (GWAS): Power, Sample Size, and Data Structure

            Roderick D. Ball

4. Managing Large SNP Datasets with SNPpy

            Faheem Mitha

5. Quality Control for Genome-Wide Association Studies

            Cedric Gondro, Seung Hwan Lee, Hak Kyo Lee, and Laercio R. Porto-Neto

6. Overview of Statistical Methods for Genome-Wide Association Studies (GWAS)

            Ben Hayes

7. Statistical Analysis of Genomic Data

            Roderick D. Ball

8. Using PLINK for Genome-Wide Association Studies (GWAS) and Data Analysis

            Miguel E. Rentería, Adrian Cortes, and Sarah E. Medland

9. Genome-Wide Complex Trait Analysis (GCTA): Methods, Data Analyses, and Interpretations

            Jian Yang, Sang Hong Lee, Michael E. Goddard, and Peter M. Visscher

10. Bayesian Methods Applied to Genome-Wide Association Studies (GWAS)

            Rohan L. Fernando and Dorian J. Garrick

11. Implementing a QTL Detection Study (GWAS) Using Genomic Prediction Methodology

            Dorian J. Garrick and Rohan L. Fernando

12. Genome-Enabled Prediction Using the BLR (Bayesian Linear Regression) R-Package

            Gustavo de los Campos, Paulino Pérez, Ana I. Vazquez, and José Crossa

13. Genomic Best Linear Unbiased Prediction (gBLUP) for the Estimation of Genomic Breeding Values

            Samuel A. Clark and Julius van der Werf

14. Detecting Regions of Homozygosity to Map the Cause of Recessively Inherited Disease

            James W. Kijas

15. Use of Ancestral Haplotypes in Genome-Wide Association Studies

            Tom Druet and Frédéric Farnir

16. Genotype Phasing in Populations of Closely Related Individuals

            John M. Hickey

17. Genotype Imputation to Increase Sample Size in Pedigreed Populations

            John M. Hickey, Matthew A. Cleveland, Christian Maltecca, Gregor Gorjanc, Birgit Gredler, and Andreas Kranis

18. Validation of Genome-Wide Association Studies (GWAS) Results

            John M. Henshall

19. Detection of Signatures of Selection Using F

            Laercio R. Porto-Neto, Seung Hwan Lee, Hak Kyo Lee, and Cedric Gondro

20. Association Weight Matrix: A Network-Based Approach Towards Functional Genome-Wide Association Studies

            Antonio Reverter and Marina R.S. Fortes

21. Mixed Effects Structural Equation Models and Phenotypic Causal Networks

            Bruno Dourado Valente and Guilherme Jordão de Magalhães Rosa

22. Epistasis, Complexity, and Multifactor Dimensionality Reduction

            Qinxin Pan, Ting Hu, and Jason H. Moore

23. Applications of Multifactor Dimensionality Reduction to Genome-Wide Data Using the R Package ‘MDR’

            Stacey Winham

24. Higher Order Interactions: Detection of Epistasis Using Machine Learning and Evolutionary Computation

            Ronald M. Nelson, Marcin Kierczak, and Örjan Carlborg

25. Incorporating Prior Knowledge to Increase the Power of Genome-Wide Association Studies

            Ashley Petersen, Justin Spratt, and Nathan L. Tintle

26. Genomic Selection in Animal Breeding Programs

            Julius van der Werf



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.