Buch, Englisch, 438 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1390 g
International Summer School on Neural Networks, "E.R. Caianiello", Vietri sul Mare, Salerno, Italy, September 6-13, 1997, Tutorial Lectures
Buch, Englisch, 438 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1390 g
Reihe: Lecture Notes in Artificial Intelligence
ISBN: 978-3-540-64341-8
Verlag: Springer Berlin Heidelberg
The book originates from a summer school held in September 1997 and thus is ideally suited for advanced courses on adaptive information processing and advanced learning techniques or for self-instruction. Research and design professionals active in the area of neural information processing will find it a valuable state-of-the-art survey.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmierung: Methoden und Allgemeines
- Mathematik | Informatik EDV | Informatik Technische Informatik Hochleistungsrechnen, Supercomputer
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Mathematik | Informatik EDV | Informatik Informatik Rechnerarchitektur
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Zeichen- und Zahlendarstellungen
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
Weitere Infos & Material
Recurrent neural network architectures: An overview.- Gradient based learning methods.- Diagrammatic methods for deriving and relating temporal neural network algorithms.- An introduction to learning structured information.- Neural networks for processing data structures.- The loading problem: Topics in complexity.- Learning dynamic Bayesian networks.- Probabilistic models of neuronal spike trains.- Temporal models in blind source separation.- Recursive neural networks and automata.- The neural network pushdown automaton: Architecture, dynamics and training.- Neural dynamics with stochasticity.- Parsing the stream of time: The value of event-based segmentation in a complex real-world control problem.- Hybrid HMM/ANN systems for speech recognition: Overview and new research directions.- Predictive models for sequence modelling, application to speech and character recognition.