Buch, Englisch, Band 47, 554 Seiten, Format (B × H): 156 mm x 233 mm, Gewicht: 900 g
Reihe: Lecture Notes in Logic
Buch, Englisch, Band 47, 554 Seiten, Format (B × H): 156 mm x 233 mm, Gewicht: 900 g
Reihe: Lecture Notes in Logic
ISBN: 978-1-107-01452-7
Verlag: Cambridge University Press
Descriptive complexity theory establishes a connection between the computational complexity of algorithmic problems (the computational resources required to solve the problems) and their descriptive complexity (the language resources required to describe the problems). This groundbreaking book approaches descriptive complexity from the angle of modern structural graph theory, specifically graph minor theory. It develops a 'definable structure theory' concerned with the logical definability of graph theoretic concepts such as tree decompositions and embeddings. The first part starts with an introduction to the background, from logic, complexity, and graph theory, and develops the theory up to first applications in descriptive complexity theory and graph isomorphism testing. It may serve as the basis for a graduate-level course. The second part is more advanced and mainly devoted to the proof of a single, previously unpublished theorem: properties of graphs with excluded minors are decidable in polynomial time if, and only if, they are definable in fixed-point logic with counting.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein Mathematische Logik
- Mathematik | Informatik Mathematik Mathematik Allgemein Diskrete Mathematik, Kombinatorik
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
Weitere Infos & Material
1. Introduction; Part I. The Basic Theory: 2. Background from graph theory and logic; 3. Descriptive complexity; 4. Treelike decompositions; 5. Definable decompositions; 6. Graphs of bounded tree width; 7. Ordered treelike decompositions; 8. 3-Connected components; 9. Graphs embeddable in a surface; Part II. Definable Decompositions of Graphs with Excluded Minors: 10. Quasi-4-connected components; 11. K5-minor free graphs; 12. Completions of pre-decompositions; 13. Almost planar graphs; 14. Almost planar completions; 15. Almost embeddable graphs; 16. Decompositions of almost embeddable graphs; 17. Graphs with excluded minors; 18. Bits and pieces; Appendix. Robertson and Seymour's version of the local structure theorem; References; Symbol index; Index.