Buch, Englisch, Format (B × H): 152 mm x 229 mm, Gewicht: 1130 g
Buch, Englisch, Format (B × H): 152 mm x 229 mm, Gewicht: 1130 g
ISBN: 978-0-323-91304-1
Verlag: William Andrew Publishing
Nanostructured Materials Engineering and Characterization for Battery Applications is designed to help solve fundamental and applied problems in the field of energy storage. Broken up into four separate sections, the book begins with a discussion of the fundamental electrochemical concepts in the field of energy storage. Other sections look at battery materials engineering such as cathodes, electrolytes, separators and anodes and review various battery characterization methods and their applications. The book concludes with a review of the practical considerations and applications of batteries.This will be a valuable reference source for university professors, researchers, undergraduate and postgraduate students, as well as scientists working primarily in the field of materials science, applied chemistry, applied physics and nanotechnology.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Energietechnik | Elektrotechnik Energieumwandlung, Energiespeicherung
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Elektronik, Optik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Biomaterialien, Nanomaterialien, Kohlenstoff
- Naturwissenschaften Chemie Physikalische Chemie Elektrochemie, Magnetochemie
Weitere Infos & Material
SECTION 1: Introduction to energy storage systems and fundamentals
1. Electrochemical energy storage technologies: state of the art, case studies, challenges, and opportunities
2. Battery modeling
SECTION 2: Engineering of battery materials
3. Nanostructured cathode materials
4. Nanostructured electrolyte materials
5. Nanostructured functionalized separators
6. Nanostructured anode materials
7. Computational materials design of nanostructured materials for battery applications
SECTION 3: Battery characterization
8. Characterization of battery materials by electrochemical method
9. Characterization of battery materials by microscopy techniques
10. Characterization of battery materials by neutron scattering methods
11. Characterization of battery materials by X-ray methods
12. Characterization of battery materials by mechanical
13. Characterization of battery materials by surface spectroscopy methods
SECTION 4: Applications, practical considerations, and perspectives on batteries
14. Battery manufacturing-from laboratory to industry-challenges
15. Life cycle assessment of batteries
16. Battery applications
17. A simplified model to improve the performance of repurposed electric vehicle batteries
18. Fully green batteries
19. Integrated technologies and novel nanostructured materials for energy storage
20. Future of lignocellulosic biomassderived activated carbon for battery application
21. Artificial intelligence and machine learning in battery materials and their applications