Principles, Characterization, and Processing
Buch, Englisch, 464 Seiten, Format (B × H): 221 mm x 286 mm, Gewicht: 1434 g
ISBN: 978-1-118-45215-8
Verlag: Wiley
With a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods.
• Provides an up-to-date, comprehensive introduction to the principles and practices of polymer morphology
• Illustrates major structure types, such as semicrystalline morphology, surface-induced polymer crystallization, phase separation, self-assembly, deformation, and surface topography
• Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites
• Discusses a broad range of advanced and novel techniques and methods, like x-ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Polymerwerkstoffe
- Naturwissenschaften Chemie Organische Chemie Polymerchemie
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Technologie der Kunststoffe und Polymere
Weitere Infos & Material
PREFACE xiii
LIST OF CONTRIBUTORS xv
PART I PRINCIPLES AND METHODS OF CHARACTERIZATION 1
1 Overview and Prospects of Polymer Morphology 3
Jerold M. Schultz
1.1 Introductory Remarks 3
1.2 Experimental Avenues of Morphological Research 4
1.2.1 Morphological Characterization: The Enabling of in situ Measurements 4
1.2.2 Morphology–Property Investigation 5
1.2.3 Morphology Development 7
1.3 Modeling and Simulation 8
1.3.1 Self-Generated Fields 9
1.4 Wishful Thinking 11
1.5 Summary 11
References 12
2 X-ray Diffraction from Polymers 14
N. Sanjeeva Murthy
2.1 Introduction 14
2.2 Basic Principles 14
2.3 Instrumentation 16
2.4 Structure Determination 17
2.4.1 Lattice Dimensions 17
2.4.2 Molecular Modeling 18
2.4.3 Rietveld Method 18
2.4.4 Pair Distribution Functions 18
2.5 Phase Analysis 19
2.5.1 Crystallinity Determination 20
2.5.2 Composition Analysis 21
2.6 Crystallite Size and Disorder 21
2.7 Orientation Analysis 22
2.7.1 Crystalline Orientation 22
2.7.2 Uniaxial Orientation 22
2.7.3 Biaxial Orientation 24
2.7.4 Amorphous Orientation 25
2.8 Small-Angle Scattering 25
2.8.1 Central Diffuse Scattering 26
2.8.2 Discrete Reflections from Lamellar Structures 27
2.8.3 Small-Angle Neutron Scattering and Solvent Diffusion 29
2.9 Specialized Measurements 30
2.9.1 In situ Experiments 30
2.9.2 Microbeam Diffraction 31
2.9.3 Grazing Incidence Diffraction 32
2.10 Summary 33
References 33
3 Electron Microscopy of Polymers 37
Goerg H. Michler and Werner Lebek
3.1 Introduction 37
3.2 Microscopic Techniques 37
3.2.1 Scanning Electron Microscopy (SEM) 37
3.2.2 Transmission Electron Microscopy (TEM) 42
3.2.3 Comparison of Different Microscopic Techniques 45
3.2.4 Image Processing and Image Analysis 46
3.3 Sample Preparation 47
3.4 In situ Microscopy 50
References 52
4 Characterization of Polymer Morphology by Scattering Techniques 54
Jean-Michel Guenet
4.1 Introduction 54
4.2 A Short Theoretical Presentation 55
4.2.1 General Expressions 55
4.2.2 The Form Factor 56
4.3 Experimental Aspects 60
4.3.1 The Contrast Factor 60
4.3.2 Experimental Setup 61
4.4 Typical Results 62
4.4.1 Neutrons Experiments: A Contrast Variation Story 62
4.4.2 X-Ray Experiments: A Time-Resolved Story 67
4.5 Concluding Remarks 69
References 69
5 Differential Scanning Calorimetry of Polymers 72
Alejandro J. Müller and Rose Mary Michell
5.1 Introduction to Differential Scanning Calorimetry. Basic Principles and Types of DSC Equipment 72
5.2 Detection of First-Order and Second-Order Transitions by DSC. Applications of Standard DSC Experiments to the Determination of the Glass Transition Temperature and the Melting Temperature of Polymeric Materials 74
5.3 Self-Nucleation 75
5.3.1 Quantification of the Nucleation Efficiency 77
5.4 Thermal Fractionation 78
5.5 Multiphasic Materials: Polymer Blends and Block Copolymers. Fractionated Crystallization and Confinement Effects 81
5.5.1 Blends and Fractionated Crystallization 81
5.5.2 Copolymers 85
5.5.3 Copolymers Versus Blends 87
5.5.4 The Crystallization of Polymers and Copolymers within Nanoporous Templates 88
5.6 Self-Nucleation and the Efficiency Scale to Evaluate Nucleation Power 91
5.6.1 Supernucleation 93
5.7 Determination of Overall Isothermal Crystallization by DSC 95
5.8 Conclusions 95
Acknowledgment 95
References 95
6 Imaging Polymer Morphology using Atomic Force Microscopy 100
Holger Schönherr
6.1 Introduction 100
6.2 Fundamental AFM Techniques 101
6.2.1 Contact Mode AFM 101
6.2.2 Intermittent Contact (Tapping) Mode AFM 104
6.2.3 Further Dynamic AFM Modes 105
6.3 Imaging of Polymer Morphology 107
6.3.1 Single Polymer Chains 107
6.3.2 Crystal Structures 107
6.3.3 Lamellar Crystals 109
6.3.4 Spherulites 109
6.3.5 Multiphase Systems 109
6.3.6 Polymeric Nanostructures 111
6.4 Property Mapping 113
6.4.1 Nanomechanical Properties 113
6.4.2 Scanning Thermal Microscopy 115
References 115
7 FTIR Imaging of Polymeric Materials 118
S. G. Kazarian and K. L. A. Chan
7.1 Introduction 118
7.2 Principles of FTIR Imaging 118
7.3 Sampling Methods 120
7.3.1 Transmission Mode 120
7.3.2 Attenuated Total Reflection (ATR) Mode 121
7.4 Spatial Resolution 122
7.4.1 Transmission FTIR Imaging 123
7.4.2 ATR–FTIR Spectroscopic Imaging 123
7.5 Recent Applications 124
7.5.1 Polymer Blends 124
7.5.2 Polymer Processes 125
7.5.3 Polarized FTIR Imaging for Orientation Studies 126
7.6 Conclusions 127
References 128
8 NMR Analysis of Morphology and Structure of Polymers 131
Takeshi Yamanobe and Hiroki Uehara
8.1 Introduction 131
8.2 Basic Concepts in NMR 131
8.2.1 Principles of NMR 131
8.2.2 Analysis of the Free Induction Decay (FID) 132
8.3 Morphology and Relaxation Behavior of Polyethylene 134
8.3.1 Morphology and Molecular Mobility 134
8.3.2 Lamellar Thickening by Annealing 134
8.3.3 Entanglement in the Amorphous Phase 136
8.4 Morphology and Structure of the Nascent Powders 137
8.4.1 Etching by Fuming Nitric Acid 137
8.4.2 Structural Change by Annealing 138
8.4.3 Nascent Isotactic Polypropylene Powder 139
8.5 Kinetics of Dynamic Process of Polymers 141
8.5.1 Melt Drawing of Polyethylene 141
8.5.2 Crystallization Mechanism of Nylon 46 143
8.5.3 Degree of Curing of Novolac Resins 145
8.6 Conclusions 146
References 146
PART II MORPHOLOGY PROPERTIES AND PROCESSING 151
9 Small-Angle X-ray Scattering for Morphological Analysis of Semicrystalline Polymers 153
Anne Seidlitz and Thomas Thurn-Albrecht
9.1 Introduction 153
9.2 Small-angle X-ray Scattering 153
9.2.1 Typical Experimental Setup 153
9.2.2 Basic Formalism Describing the Relation between Real-Space Structure and Scattering Intensity in a SAXS Experiment 154
9.2.3 Methods of Analysis Used for SAXS on Semicrystalline Polymers 155
9.3 Concluding Remarks 162
Appendix: Calculation of the Model Function KÞ '' sim(s) 163
References 163
10 Crystalline Morphology of Homopolymers and Block Copolymers 165
Shuichi Nojima and Hironori Marubayashi
10.1 Introduction 165
10.2 Crystalline Morphology of Homopolymers 165
10.2.1 Crystal Structure 165
10.2.2 Lamellar Morphology 167
10.2.3 Spherulite Structure 168
10.2.4 Crystalline Morphology of Homopolymers Confined in Isolated Nanodomains 168
10.2.5 Crystalline Morphology of Polymer Blends 169
10.3 Crystalline Morphology of Block Copolymers 171
10.3.1 Crystalline Morphology of Weakly Segregated Block Copolymers 172
10.3.2 Crystalline Morphology of Block Copolymers with Glassy Amorphous Blocks 173
10.3.3 Crystalline Morphology of Strongly Segregated Block Copolymers 174
10.3.4 Crystalline Morphology of Double Crystalline Block Copolymers 175
10.4 Concluding Remarks 176
References 176
11 Isothermal Crystallization Kinetics of Polymers 181
Alejandro J. Müller Rose Mary Michell and Arnaldo T. Lorenzo
11.1 Introduction 181
11.2 Crystallization Process 182
11.3 Crystallization Kinetics 182
11.3.1 The Avrami Equation [31] 183
11.3.2 Nucleation and Crystal Growth: Lauritzen–Hofmann Theory